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Abstract
To foveate targets in different depths, the movements of the two eyes must be disconju-

gate. Fine measurements of eye rotations about the three principal axes have demonstrated

that disconjugate eye movements may appear not only in the horizontal, but also in the verti-

cal and torsional directions. In the presence of visual targets, disconjugate eye movements

are driven by the vergence system, but they may also appear during vestibular stimulation.

Disconjugate eye movements are highly adaptable by visual disparities, but under normal

condition the effects of adaptation only persist when one eye is covered. Finally, disorders of

the brainstem and cerebellum may lead to abnormal disconjugate eye movements that are

often specific for the topography of the lesion. This chapter reviews the literature on the

phenomenology of disconjugate eye movements over the last 15 years.

Copyright © 2007 S. Karger AG, Basel

The goal of normal disconjugate eye movements is to direct the corre-

sponding retinal points of the two eyes to a visual object that is nearer or farther

than the previous object. Such vergence movements can also be smooth when

the object of interest moves slowly in depth. Both disparity and accommoda-

tion-vergence synkinesis can drive vergence movements. Recently, it has also

been shown that perceived depth alone elicits vergence eye movements [1].

Geometrically, binocular movements are disconjugate, if amplitude and/or

direction are unequal for both eyes. Considering the full kinematics of eye rota-

tions, the term ‘direction’ includes ocular rotation about the line of sight, which

is an important degree of freedom to ensure extrafoveal retinal correspondence.

If one takes into account the rigid geometric specifications for 3-D – i.e. hori-

zontal, vertical, and torsional – binocular rotations, it is not surprising that nor-

mal eye movements are generally disconjugate when subjects view near targets.

As we shall see, even eye movements for foveation of targets at infinity exhibit

some disconjugacy due to neural and mechanical factors. 
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This paper reviews the literature on the phenomenology, including

pathophenomenology, of disconjugate eye movements over the last 15 years. 

Horizontal Vergence Movements

Under natural viewing conditions, horizontal vergence movements are

usually dysmetric, i.e. moving gaze from a near to a far target leads to exces-

sive convergence, and moving gaze from a far to a near target to insufficient

convergence [2]. The degree of this physiological vergence weakness can

be reduced by increased attention [3] and instruction [4], but vergence is

always less precise than version [5]. In subjects with strong monocular pre-

ference, vergence movements are typically associated with small horizontal

saccades [6]. 

Upon symmetric step stimulation with horizontal disparity, convergence is

usually faster than divergence [7]. While the dynamics of convergence move-

ments is independent of target location, divergence movements become faster

the closer the initial target is to the eyes [8]. When visual feedback is eliminated

during vergence, the position trajectories are step-like, not smooth. This open-

loop response consists of a pulse-like or transient component and a step-like or

sustained component [9, 10]. While both components are adaptable, only the

pulse-like component influences the dynamics of the adapted vergence

response [11]. Experiments eliciting vergence movements by velocity steps of

horizontal disparities suggest that the vergence open-loop response may origi-

nate from monocular visual pathways [12]. 

Disparity-driven convergence eye movements frequently show large asym-

metries, which vary from trial to trial and are usually compensated in the later

phase of the convergence movement [13]. While this later phase probably uses

visual feedback, the initial phase seems to be preprogrammed [14]. The occa-

sional appearance of two closely spaced high-velocity vergence movements in

response to disparity supports the notion that the initial vergence component is

evoked by an internal, not visual, feedback mechanism that is switched on and

off, analogous to the saccadic system [15, 16].

Small or large dichoptic displays that are counterphasically oscillated in

the horizontal direction elicit dynamic convergence/divergence [17]. Brief hor-

izontal (or vertical) disparity steps of 2� or less evoke short-latency vergence

movements, which are enhanced when the stimulus is presented shortly after a

saccade [18–20]. Similar vergence movements with short latencies are also

driven by radial flow [21]. When vergence movements with or without accom-

panying saccades are elicited with a gap period before target onset, vergence

latency decreases significantly [22]. 
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Vertical Vergence Movements

A vertical prism placed in front of one eye induces divergent eye move-

ments in the vertical direction. Training with vertical prisms can increase the

vertical fusional amplitude, predominantly by enhancing the motor, not the sen-

sory component [23]. The motor capability to fuse vertical disparities increases

with convergence. This increase is due to the motor component, while the sen-

sory component for far and near viewing is practically the same [24]. Similarly,

skew deviation associated with static counterroll (intorting eye hypertropic)

increases with convergence [25]. 

Vertical fusion is accompanied by conjugate torsion toward the higher eye

[26], a pattern that qualitatively resembles the one seen in patients with dissoci-

ated vertical deviation [27]. Whether the binocular torsion associated with

vertical fusion is mediated by the superior oblique muscles (SO) [26] or is of

central origin [28] remains to be answered. 3-D eye movement trajectories

during vertical fusion suggest that patients with congenital trochlear nerve

palsy use predominantly the vertical recti, while patients with acquired

trochlear nerve palsy show various patterns of vertical and oblique eye muscle

activations [29]. 

Dichoptic counterphasic oscillation of displays in the vertical direction

elicits vertical vergence [30]. These movements show increased gain and

reduced phase lag with larger stimulus diameter, which contrasts horizo-

ntal dichoptic display oscillation, in which display diameter is less important

[31].

Cyclovergence

Spontaneous fluctuation of torsional eye position is generally conjugate,

i.e. cyclovergence is considerably more stable than cycloversion [32]. Opposite

cyclorotation of the images presented to the two eyes evokes static cyclover-

gence, which adds to the eye position-dependent cyclovergence [33]. The latter

results from the outward rotations of Listing’s planes during convergence (see

below). 

Dynamic cyclovergence can be elicited by fusible visual patterns projected

to each eye separately and oscillated out of phase in the frontal plane [34, 35].

The gain of dynamic cyclovergence is highest for low frequencies and low

amplitudes and therefore is appropriate to correct for drifts in binocular stereo-

scopic alignment, which are both slow and small [35]. Occlusion of the central

area does not influence the gain of cyclovergence, although the gain of

cycloversion decreases [36].
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Listing’s Law during Convergence

For the following considerations, eye positions need to be described three-

dimensionally with a horizontal, vertical, and torsional component. Since rota-

tions are noncommutative, the most convenient conventions, such as rotation

vectors or quaternion vectors, express every eye position as a single axis rota-

tion from a reference position. Accordingly, vergence is then defined as the

rotation that transforms the left eye position into the right eye position [37]. 

Rotation or quaternion vectors hold a specific 3-D orientation in the head.

Listing’s law states that, in the absence of dynamic vestibular stimulation, these

3-D vectors all lie in one plane, so-called Listing’s plane. In the absence of con-

vergence, the Listing’s planes of the two eyes are relatively parallel and oriented

approximately frontal. With convergence the planes rotate outward [38–41], i.e.

they ‘swing out like saloon doors’ [42]. In other words, the primary positions of

the two eyes diverge during convergence [43]. Among the cited studies, the angle

of the outward rotation of the Listing’s planes varies considerably and amounts

roughly to about 1/4 (range: 0.16–0.43) of the convergence angle (fig. 1). 

An explanation of why the Listing’s planes rotate outward during conver-

gence has to consider both visual and motor variables [44]. Tweed [45] pro-

posed a most compelling hypothesis that is based on an optimal compromise

between visual and motor variables: The visual variable is the maximal align-

ment of images in the visual plane on the two retinas irrespective of gaze direc-

tion; the motor variable is to keep rotation about the line of sight as close as

possible to the zero vergence primary position. Since the amount of cyclovergence

varies with gaze elevation when the Listing’s planes are rotated outward, stere-

ograms that critically depend on the relative torsional orientation of the two

retinas are only visible at a specific gaze elevation [46]. Hence, ocular motor

control plays an important role in depth vision. 

�

�/4 �/4

Fig. 1. Top view of binocular Listing’s planes during far (left) and near (right) viewing.

Each Listing’s plane rotates temporally by a quarter of the vergence angle (�).
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MR images demonstrate that rectus pulleys in converging eyes are slightly

extorted [47]. The outward rotation of Listing’s plane, however, cannot be

explained by this change of the rectus pulleys and therefore must be due to vari-

ations of oblique muscle innervations. The convergence-induced outward rota-

tion of Listing’s planes does not depend on whether convergence is induced by

a stereogram, a horizontal prism, or an accommodative stimulus [48–50]. The

orientation of Listing’s planes can, however, be modified by phoria adaptation

(see below). 

Vergence movements with the eyes at various elevations lead to different

torsional components that can be explained by the vergence-modulated orienta-

tion of Listing’s plane [41]. Accordingly, during pure vergence movements with

gaze elevated or depressed, the eyes rotate about an axis which is orthogonal to

the gaze direction [51]. This is different from the orientation of rotation axes

during saccades, which tilt in the direction of gaze by only half the gaze angle

[52]. During asymmetric vergence movements, e.g. when foveating a target

moving along the line of sight of one eye, monocular torsion is less stable than

cyclovergence and varies between convergence and divergence [53, 54]. Pitch

head impulses while the eyes are converging on a near target in front of one eye

lead to torsional movement components in both the adducting and the straight

ahead viewing eye [55]. This effect corresponds to a modification of ocular

rotation axes due to the convergence-induced outward rotation of Listing’s

planes.

The Listing’s planes in patients with acquired trochlear nerve palsy are not

symmetric; the plane of the affected eye is rotated outward, as if this eye were

converging [56]. In congenital trochlear nerve palsy, the orientation of Listing’s

plane of the affected eye is normal; thus, congenital trochlear nerve palsy is not

due to changed function of a single extraocular eye muscle [56]. In patients

with acquired or congenital trochlear nerve palsy, Listing’s plane of the affected

eye does not rotate temporally upon convergence. This finding suggests an

important role of the SO in modifying the orientation of Listing’s plane as a

function of vergence [57]. In patients with acute trochlear nerve palsy, Listing’s

law is violated by the affected eye during downward saccades; this eye shows

dynamic extorsion as a result of the missing agonistic action of the SO [58]. In

patients with central abducens nerve palsy, Listing’s law is violated by both

eyes, while in patients with peripheral abducens nerve palsy, Listing’s law is

violated by the paretic eye and in the acute state only [59].

Compared to healthy subjects, patients with intermittent horizontal strabis-

mus exhibit a similar, but more variable relation between vergence angle and

angle between the Listing’s planes [60]. In patients with intermittent exotropia,

vertical gaze-dependent cyclovergence is increased, possibly because additional

convergence is required to cancel the exodeviation between the two eyes [61].
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In a stereoblind patient with strabismus, the Listing’s planes of the two eyes

were normal in shape, i.e. relatively planar, but changed their orientation

depending on which eye was fixating [62]. This effect was most probably due to

accommodation-induced vergence. 

Asymmetric Vergence Movements and Hering’s Law

Hering’s law of equal innervation implies that equal version and vergence

commands are sent to both eyes and that the binocular motor output represents

the sum of the two signals. The analysis of asymmetric vergence movements

(fig. 2) can give some indication whether Hering’s law holds [63, 64] or

whether the two eyes are independently controlled, as advocated by Helmholtz

[65, 66]. As we will see, there are arguments for both theories.

During static convergence on a target in front of one eye, i.e. asymmetric

convergence, only the inferior oblique muscle contracts in this eye, as demon-

strated with MRI; contraction of the same muscle, apart from contractile

changes in the lateral and medial rectus muscles, is also seen in the fellow eye,

which is directed inward [47]. During rapid gaze shifts along the line of sight of

one eye, which calls for asymmetric vergence, the horizontal peak accelerations

of the two eyes are similar, despite different position trajectories [67]. This find-

ing suggests equal saccadic pulses for each eye, according to Hering’s law,

together with an additional vergence signal. After human subjects were trained

to have a vertical vergence component during symmetric horizontal vergence,

the vertical vergence component could also be demonstrated during smooth

pursuit of targets in depth both along the line of sight of one eye [68]. Thus

symmetric smooth pursuit seems to be combined with vergence to produce

Symmetric Asymmetric

Fig. 2. Top view of both eyes during symmetric and asymmetric convergence move-

ments. The visual target moves from far to near (arrow).
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asymmetric slow eye movements, which speaks against monocular control of

these movements.

Some subjects are able to initiate smooth asymmetrical ‘saccade-free’ con-

vergence movements when changing gaze from a far to a near target [69]. Thus,

during binocular viewing, the ocular motor system is able to generate eye

movements that do not adhere to Hering’s law of equal innervation. Similarly,

the initial monocular smooth pursuit response to a target that moves in depth

solely depends on target motion and is independent of the response of the other

eye [70].

The firing rate of abducens motoneurons for a given eye position is higher

with than without convergence, but, paradoxically, lateral rectus force (and sim-

ilarly medial rectus force) is not increased [70a]. This finding still awaits an

explanation. A reanalysis of single neuron recordings during eye movements

that included vergence revealed that neural signals in abducens motoneurons,

abducens interneurons, and medial rectus motoneurons encode the position of

both eyes, not just one eye [71]. On the other hand, premotor neurons in the

paramedian pontine reticular formation encode saccadic velocity signals for

only one eye, not both [72]. These findings speak against a neural implementa-

tion of Hering’s law. 

Saccade-Associated Vergence Movements 

Peak vergence velocity increases when vergence is combined with a sac-

cade, an effect that is more pronounced in divergence than convergence [73].

Vice versa, when saccades occur with vergence movements, the peak velocity

of the saccades is reduced, more prominently so with convergence than diver-

gence [74]. These findings suggest a nonlinear interaction between conjugate

and disconjugate premotor systems; the omnipause neurons probably represent

the crucial neural structure for gating saccade-related horizontal vergence [75].

This would also explain why saccadic oscillations occur, when saccades end

during ongoing vergence [76–78]. Note that even horizontal and vertical sac-

cades between far targets are associated with small transient vergence compo-

nents, but these are probably related to mechanical differences between

adducting and abducting muscles [75, 79]. Horizontal saccades also produce

small torsional transients out of Listing’s plane, which are not equal in ampli-

tude; hence, the eyes cycloverge somewhat shortly after the beginning of each

saccade [80].

Saccades in patients with one deeply amblyopic eye are nonconjugate, i.e.

Hering’s law seems to rely on intact binocular vision [81]. Subjects with ani-

sometropic spectacles show saccades with different amplitudes in both eyes and
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asymmetric postsaccadic drift [82]. When saccades are made between targets at

different distances, a presaccadic vergence movement along the isovergent line

of the initial target appears [83]. This observation speaks for separate version

and vergence channels contributing to fast eye displacements. A similarly

strong coupling between version and vergence is found during incorrect sac-

cades evoked by two targets appearing simultaneously in 3-D space [84].

Conversely, when targets are placed at closer distances from the eyes, no pre-

saccadic convergence and only a small presaccadic divergence is observed, and

postsaccadic vergence is usually asymmetric [85]. The latter finding speaks

against a balanced interaction between the vergence and version systems during

the saccade, and therefore against a Hering-type implementation of such move-

ments. Such saccades are dominated by one eye, so that a least one of the two

eyes is on target in time. 

Binocular vertical displacements between near targets in front of one eye

require different vertical amplitudes of each eye to maintain binocular align-

ment. In downward movements, a major portion of the required disconjugacy

takes place during the saccades, while in upward movements the intrasaccadic

portion amounts to about half [86]. Dynamic dissociations between saccadic

and vergence movements can also be observed during vertical saccades

between targets in the midsagittal plane at different depth [87].

Binocular Adaptation

Phoria Adaptation
Normal binocular fixation of a near target in a tertiary position requires a

vertical vergence component, when eye positions are expressed in a head-fixed

coordinate system. This component appears to be independent of whether sub-

jects are viewing monocularly or binocularly [88]. Eight hours of monocular

occlusion leads to excyclophoria and hyper- or hypophoria [89]. If an eye is

covered and passively rotated away from the position of the fellow eye with a

scleral suction lens during a few minutes, ocular misalignment persists up to

10 min or until binocular viewing is permitted [90]. 

When short-term phoria adaptation is performed with a vertical disparity

at a single location, phoria becomes uniform for all gaze directions. Upon two

vertical disparities at opposite gaze directions and with opposite sign, adapted

phoria shows a gradient along the line between the two stimuli [91, 92]. Phoria

adaptation to opposite vertical disparities is also effective along the depth axis

[93] or to multiple vertical disparities at different near and far locations [94].

Human subjects are also able to adapt vertical phoria to different prism-induced

vertical disparities that vary with head position [95] or with head and gaze
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position [96]. When monkeys are trained to synchronize vergence eye move-

ments in synchrony with vestibularly evoked eye movements upon pitch oscilla-

tions, these oscillations evoked vergence eye movements even in the dark [97, 98]. 

Adaptation to discrete increments of refraction along a horizontal prism is

also possible, but adapted vergence changes only gradually when crossing the

prism edges [99]. After 30–150 s of cyclovergence evoked by incyclo- or excy-

clodisparity, the eyes do not tort back to their previous torsional positions, even

in the presence of a visual stimulus [100]. Most likely, this torsional hysteresis

is the result of fast phoria adaptation. 

Phoria adaptation with a vertical prism over one eye is often impaired in

patients with cerebellar disease. Thus the cerebellum seems to be decisively

involved in phoria adaptation [101].

Adaptation of Listing’s Plane
Three days of vertical disparity with prisms induces, besides vertical pho-

ria, reorientations of Listing’s planes; Listing’s plane of the higher eye is rotated

up and Listing’s plane of the lower eye rotated down [102]. Phoria adaptation to

different cyclodisparities along the vertical axis also modifies the orientation of

Listing’s planes [103]. 

Binocular Saccade Adaptation
Intrasaccadic displacement of a visual target leads to rapid binocular sac-

cade adaptation. If the displacement is only presented to one eye, while the tar-

get is unchanged for the other eye, short-term adjustments are again conjugate,

which suggests that there is no mechanism for fast disconjugate saccade adap-

tation [104]. Dichoptically presented random-dot patterns with local disparities

representing a 3-D object lead to immediate position-dependent saccadic dis-

conjugacies that persist during subsequent monocular viewing [105]. Similar

immediate disconjugacies of saccades can be observed when disparities are

introduced by dichoptical images that differ in size [106].

Subjects with anisometropic spectacles show saccades with different

amplitudes and postsaccadic drifts between both eyes, even during monocular

viewing [82, 107]. Already an image size inequality of 2% leads to disconjugate

horizontal and vertical saccades, which persist after a short training period

when tested in the absence of normal binocular visual targets [108]. Placing an

afocal magnifier in front of one eye leads to disconjugate memory-guided sac-

cades, which outlasts the removing of the magnifier after the training period,

when subjects are viewing monocularly [109, 110]. Dichoptically presented

patterns that are displaced at the end of each vertical saccade induce amplitude

disconjugacy, but only little disconjugate postsaccadic drift [111]. Apparently,

this effect does not require foveal fusion since microstrabismic patients adapt as
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well [112]. When vertical saccades are disconjugately adapted, smooth pursuit

movements remain conjugate and vice versa [113]. Thus, the two classes of eye

movements have separate mechanisms for binocular adaptation. 

In patients with trochlear nerve palsy, saccades become more conjugate

after strabismus surgery, an effect that is more pronounced in patients with con-

genital than in patients with acquired trochlear nerve palsy [114]. In rhesus mon-

keys with one surgically weakened extraocular muscle, the paretic eye shows

postsaccadic drift with the normal eye viewing. Deafferenting the paretic eye

leaves postsaccadic drift unchanged; thus, proprioception from the paretic eye

does not play a role in the adaptation of postsaccadic drift [115]. Proprioceptive

deafferentation alone impairs ocular alignment and saccade conjugacy [116]. 

Disconjugate Eye Movements Evoked by Vestibular Stimulation

Vergence eye movements are elicited by linear motion in the dark with or

without visual targets [117]. The gain of the translational vestibulo-ocular

reflex (VOR) during heave ( � up-down) and sway ( � left-right) whole-body

oscillation increases with increasing convergence [118, 119]. During surge

( � fore-aft) oscillation, the gain of the translational VOR increases with both

increasing gaze eccentricity and increasing convergence, which is qualitatively

accurate for foveal stabilization of both eyes [120–122]. Such vergence respon-

ses are enhanced by the presence of visual stimuli [123]. During visual fixation

upon isovergence targets along the horizontal meridian and concurrent rapid

oscillations in various directions in the horizontal plane, both eyes move in the

geometrically correct direction needed to stabilize the targets on the two foveae;

the gain of the version component (average velocity of both eyes divided target

velocity), however, amounts to only around 0.5, while the gain of the vergence

component (right eye velocity minus left eye velocity) ranges around unity

[124]. This finding might reflect the fact that for visual acuity it is more impor-

tant to stabilize the relative orientation of the lines of sight than binocular posi-

tion. Vergence also modifies the gain of the angular VOR for gaze stabilization.

For example, the gain of the VOR elicited on a horizontal turntable anticipates

the vergence angle by about 50 ms [125].

Ocular counterroll elicited by head or whole-body roll interferes with

stereopsis. This geometric incompatibility increases further with decreasing tar-

get distance. It is therefore advantageous that ocular counterroll decreases

strongly during convergence [126, 127]. In the presence of ocular counterroll,

binocular movements from a far to a near target show unequal torsion; the

required torsion for the undermost eye is larger than for the uppermost eye,

since convergence is associated with extorsion. Such torsional disconjugacy,
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however, cannot be demonstrated for divergent eye movements [128]. Static

head roll also leads to excyclovergent eye positions [129]. This phenomenon

can be explained by a static hysteresis that differs between the eyes contra- and

ipsilateral to head roll [130]. Probably, ocular torsional hysteresis is introduced

at the level of the otolith pathways because the direction-dependent torsional

position lag of the eyes was related to head roll position, not eye position.

Asymmetric binocular torsion evoked by hypo- or hypergravity may be a pre-

dictor for space sickness [131–133].

During position steps of head roll, the eyes show dynamic binocular coun-

terrolling and skewing. While the gain of dynamic binocular torsion is larger in

upright than in supine position, dynamic skewing is unaffected by the addi-

tional otolith input that appears in upright position [134]. Constant rotation

about an off-vertical axis causes horizontal vergence movements [135]. During

oscillatory head roll, the ocular rotation axes of the two eyes are convergent

both in the dark and when fixating upon a far light dot; when subjects fix upon

a near light dot, the convergence of binocular rotation axes exceeds the conver-

gence of binocular positions [136]. The Bielschowsky head-tilt sign in unilat-

eral trochlear nerve palsy, i.e. increased vertical and torsional divergence with

the head tilted towards the affected eye, can be explained by inward tilt of the

rotation axis of the covered eye during head oscillation about the naso-occipital

axis [137]. This ‘convergence’ of ocular rotation axes is the result of decreased

force by the SO of the covered paretic eye or, according to Hering’s law,

increased force parallel to the paretic SO in the covered unaffected eye. The

gain of the VOR in an eye with trochlear nerve palsy is reduced in all directions,

but especially towards intorsion, depression and abduction, in accordance with

the 3-D pulling direction of the SO [138]. In patients with peripheral abducens

nerve palsy, the gain of the horizontal VOR in the affected eye is reduced in

both directions, when tested in the dark. In the light, horizontal gains normalize

in patients with mild or moderate palsy [139]. The gain of the torsional VOR is

reduced in both the healthy and the affected eye [140].

The orientation of ocular rotation axes as a function of eye position depends

on the gain of the torsional VOR; the lower the torsional gain, the more the axes

tilt with eccentric gaze position [141]. As the torsional gain decreases further

with increasing convergence, average 3-D eye positions scatter closely around

the temporally rotated Listing’s plane, which is advantageous for binocular reti-

nal stabilization [142]. Head roll in patients with peripheral abducens nerve

palsy leads to a hyperdeviation of the ipsilateral eye, independent of which eye is

affected. In patients with central abducens palsy, the same eye (healthy or

affected) hyperdeviates when rolling the head to the left or the right side [143].

At low frequencies, the horizontal and vertical VOR can be cancelled by

visually fixing upon head-fixed targets. During head oscillations about the 
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naso-occipital axis visual suppression of the elicited torsional VOR is incom-

plete, but the lines of sight of the two eyes remain on target [144]. If subjects

during head roll fix upon head-fixed eccentric horizontal targets at near distance,

the eyes also show vertical movement components, even if one eye is covered

[145]. These components are required to keep the lines of sight pointed to the

targets. Thus, the vergence system correctly modifies the eye movements that are

not visually cancelled to prevent horizontal and vertical retinal slip in either eye.

Disconjugate Eye Movements and Blinks

Initial eye movements during voluntary blinks are extorsional, downward,

and inward, consistent with an early pulse-like innervation of the inferior rectus

muscle [146]. Thus, during this early phase of blinking, the eyes converge and

excyclodiverge. Blinks modify the kinematics and dynamics saccade-vergence

and slow vergence eye movements [147, 148]. Besides mechanical factors of

the eye plant, the found changes might reflect the blink-induced decrease in

omnipause neuron activity.

Pathological Disconjugate Eye Movements

Normally, vergence eye movements in response to steps of a visual stimuli

become slower with age, which has to be taken into account when evaluating

patients with suspected vergence disorders [149]. 

Binocular positions in patients with cerebellar dysfunction are usually

esophoric or even esotropic. In addition, there is a hypertropia that varies as a

function of horizontal eye position, so-called alternating skew deviation with

the abducting eye higher. The patients show both conjugate and disconjugate

saccadic abnormalities that are also eye position dependent [150]. The mecha-

nism of alternating skew deviation in patients with cerebellar disease could be

due to a lost correction of changed eye muscle pulling directions, which is

required when animals become frontal eyed. If, in addition, one assumes an

imbalance of graviceptive-ocular pathways responding to head pitch, alternat-

ing skew deviation can be explained by this mechanism [151]. 

Dissociated vertical divergence (DVD) includes the following ocular

motor phenomena [152]: Upon occlusion of either eye, a horizontal and

cyclovertical latent nystagmus develops. This is quickly followed by cyclover-

sion/vertical vergence, with the fixing eye intorting and tending to move down-

ward and the covered eye extorting and moving up. Simultaneously, upward

versions occur for the maintenance of fixation. This, in turn, leads to further



Straumann 102

upward movement of the covered eye and, at the same time, to a reduction of the

cyclovertical component of the latent nystagmus. Thus, a possible ‘purpose’ of

this cycloversion and vertical vergence is to damp the cyclovertical nystagmus

that occurs when one eye is covered [153]. Brodsky hypothesized that DVD is a

dorsal light reflex that occurs when binocular vision is impaired in infancy

[154]. Since patients with DVD only transiently perceive a tilt of the subjective

visual vertical when one eye is covered, it was speculated that the cancellation

of SVV tilt in these patients is the main function of DVD [155]. 

Binocular eye movements in patients with convergent-divergent pendular

nystagmus are conjugate in the vertical direction, but phase shifted by 180� in

the horizontal and torsional directions [156]. The lesion is usually localized

within neural structures of the vergence system. If horizontal saccades or

smooth pursuit eye movements are pathologically coupled with convergence,

the abducting eye will appear paretic despite an intact abducens nerve. This so-

called pseudo-abducens palsy is caused by lesions of convergence pathways

near the midbrain-diencephalic junction and is frequently associated with

upgaze palsy and convergence-retraction nystagmus [157]. Paramedian thala-

mic infarctions without involvement of the midbrain may lead to a selective

bilateral pseudo-abducens palsy [158]. Convergence-retraction nystagmus,

however, is due to a mesencephalic lesion [159] and represents a disorder of the

vergence system [160]. Pathologically disconjugate eye movements with the

vergence system intact, is typical of internuclear ophthalmoparesis [161]. Mild

internuclear ophthalmoparesis, in which the adducting eye is only slightly

slower than the abducting eye, is often missed by clinicians, as demonstrated by

infrared oculography [162]. 

Ocular bobbing, which rarely appears after infratentorial lesions, but oth-

erwise has no localizing value, may be disconjugate [163]. Disconjugate verti-

cal and torsional ocular movements, resembling seesaw nystagmus, have been

observed in a patient with locked-in syndrome after large infarction of the pons

[164]. Smaller lesions in the ventral pons involving the nucleus reticularis

tegmenti pontis lead to impairment of slow vergence movements to ramp tar-

gets [165]. On the other hand, fast vergence movements to step targets are

affected by lesions of upper pontine nuclei [166].
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