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Abstract Anatomical and electrophysiological studies
have demonstrated up–down asymmetries in vertical
ocular motor pathways. We investigated whether these
asymmetries extend to the capacity for short-term
adaptation of the vertical vestibulo-ocular reflex
(VVOR) in humans. Specifically, we asked whether
smooth pursuit signals are sufficient to asymmetrically
adapt the VVOR. Healthy human subjects (N=8),
positioned 90� left-ear-down and fixating with their eyes
upon a small laser dot (diameter: 0.1�) projected on a
sphere (distance: 1.4 m) were trained toward low VVOR
gain for 30 min with symmetric and asymmetric visual
VVOR cancellation paradigms, while being oscillated
(0.2 Hz, ±20�) on a motorized turntable about the
interaural earth-vertical axis. During asymmetric VVOR
cancellation, the target was head-fixed in either the
pitch-up or pitch-down half-cycles of oscillation
(=trained direction) and space-fixed during the other
half-cycles (=untrained direction). During symmetric
VVOR cancellation, the target was head-fixed through-
out the oscillations. Before and after adaptation, the
pitch-up and pitch-down VOR gains were assessed
during turntable oscillation in complete darkness. Before
adaptation, average gains of pitch-up (0.75±0.15 SD)

and pitch-down (0.79±0.19 SD) VOR were not signifi-
cantly different (paired t test: P>0.05). On an average,
relative gain reductions induced by selective pitch-up
(pitch-up VOR: 32%; pitch-down VOR: 21%) and
pitch-down (pitch-up VOR: 18%; pitch-down VOR:
30%) VOR cancellation were significantly (P<0.05)
larger in the trained than in the untrained direction.
Symmetric visual VVOR cancellation led to a signifi-
cantly (P<0.01) larger relative gain reduction of the
pitch-down (41%) than the pitch-up (33%) VOR. None
of the paradigms led to significant changes of phase or
offset. We conclude that, in human subjects, the smooth
pursuit system is capable to asymmetrically decrease the
gain of the VVOR equally well in both the upward and
downward direction. The unexpected asymmetric
decrease of the VVOR gain after symmetric visual can-
cellation may be related to the directional preferences of
vertical gaze–velocity sensitive Purkinje cells in the
flocculus for the downward direction.

Introduction

While the ocular motor system is right–left symmetric,
anatomical and electrophysiological studies docu-
mented vertical asymmetries in various species (Ito
et al. 1977; Darlot et al. 1981; Matsuo and Cohen
1984; Snyder and King 1988). In healthy humans, eye
movements evoked by vestibular or optokinetic stimuli
show intraindividual differences between up and down,
but no significant directional asymmetries appear when
data are pooled over larger human populations (Baloh
et al. 1986; Demer 1992). However, consistent vertical
asymmetries of the human ocular motor system
become evident in disease. For instance, in patients
with internuclear ophthalmoplegia, the vestibulo-ocular
reflex (VOR) elicited by head impulses in the direction
of the anterior semicircular canals (SCC) is relatively
well preserved, but impaired in the direction of the
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posterior canals (Cremer et al. 1999). Furthermore,
patients with atrophy of the vestibulo-cerebellum typ-
ically exhibit downbeat nystagmus (DBN) and show
better preservation of upward smooth pursuit eye
movements (Zee et al. 1974, 1976; Halmagyi et al.
1983). These and other findings in patients with
brainstem or cerebellar diseases suggest the existence of
inherent asymmetries in human vertical ocular motor
pathways, which, in the absence of disease, may be
counterbalanced by intact function of specific neural
structures.

In healthy humans, asymmetries of vertical ocular
motor pathways may be unmasked by direction-spe-
cific adaptation of eye movements, for example, of the
VOR. Ongoing recalibration, i.e. adaptation, of the
VOR gain is indispensable to compensate for changes
in the ocular motor system, which occur due to
development, aging or disease. Under experimental
conditions, VOR gain adaptation can be induced by
exposure to visual–vestibular mismatch paradigms
(Melvill et al. 1988; Demer et al. 1989; Paige and
Sargent 1991). A mismatch between vestibular and
visual stimulation leads to slippage of the target
image on the retina and indicates inappropriate VOR
behavior. The mismatch signal, in turn, is used to
recalibrate the VOR gain.

In recent years, numerous studies on VOR motor
learning have focused on the vertical VOR (VVOR)
because of its behavioral simplicity (e.g. little effect of
vergence) and well-defined anatomical connections
(Baloh and Demer 1991; Peng et al. 1994; Viirre and
Demer 1996). Asymmetric VVOR adaptation has been
attempted in squirrel monkeys; by using an optokinetic
visual stimulus moving with the turntable in one
direction (visual VOR cancellation) and opposite to
the turntable in the other direction, upward and
downward VVOR gains were modified in a reciprocal
fashion, i.e. VVOR gains increased in one direction
and decreased in the other direction (Hirata et al.
2002). This finding indicated that, in monkeys, control
mechanisms for upward and downward VVOR gain
allow direction-specific modifications.

However, asymmetric VVOR adaptation has not
been tested in humans so far, and it remains unclear,
whether the capacity for direction-specific VVOR
adaptation is different for upward and downward
directions. In the present study, we investigated the
human capacity for asymmetrical short-term VVOR
adaptation using a smooth pursuit stimulus and asked
specifically, whether selective upward or downward
VVOR cancellation would be equally effective, and
whether symmetric VVOR cancellation would lead to
gain reductions of similar magnitudes in both direc-
tions. Since the optokinetic nystagmus in humans is
dominated by the smooth pursuit system (Leigh and
Zee 1999), human subjects should be able to asym-
metrically adapt VVOR gains by fixing their gaze
upon a dot that moves with the head in one direction,
but stays space-fixed in the other direction.

Methods

Definition

Previous studies on VOR adaptation in humans used the
expression ‘short-term adaptation’ to describe changes
of gain and phase induced by visuo-vestibular mismatch
paradigms lasting around 20 min (Kramer et al. 1998;
Shelhamer et al. 1994; Tiliket et al. 1994; Trillenberg
et al. 2003). In the present paper, we use the same
expression in its descriptive sense, i.e. without implying
an underlying mechanism for the VOR changes.

Subjects

Eight healthy subjects (six female; 24–36 years old) gave
their informed consent to participate in this study. The
experimental protocol was approved by a local ethics
committee at Zurich University Hospital, and adhered
to the Declaration of Helsinki for research involving
human subjects. All subjects were free from disease and
none of them were taking any medication at the time of
the experiments.

Experimental setup

Subjects were seated upright on a three-axes motor-
driven turntable (Acutronic, Jona, Switzerland) with the
head restrained by an individually molded thermoplastic
mask (Sinmed BV, Reeuwijk, The Netherlands). After
the chair was rotated to the 90� left ear down position
(LED), subjects were oscillated about the interaural,
earth-vertical axis. This stimulus isolates the vestibular
response to the semi-circular canals, i.e. the otolith input
remains constant. By way of two computer-controlled
mirror-galvanometers, a laser dot (diameter: 0.1�) was
projected onto a sphere with a radius of 1.4 m from the
center of the head.

Eye movement recordings

Eye movements were recorded monocularly using dual
search coils (Skalar Instruments, Delft, The Nether-
lands). The coil frame around the head (side length:
0.5 m) generated three orthogonal digitally synchro-
nized magnetic wave field signals of 80, 96 and 120 kHz.
A digital signal processor computed a fast Fourier
transform in real time on the digitized search coil signal
to determine the voltage induced on the coil by each
magnetic field (system by Primelec, Regensdorf, Swit-
zerland). Coil orientation could be determined with an
error of less than 7% over a range of ±30�, and with a
noise level of less than 0.05� (root mean squared devia-
tion). Eye position signals were digitized at 1,000 Hz per
channel with 12-bit resolution.
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Search coil annuli were calibrated (Bergamin et al.
2001) and then placed around the cornea of the right or
left eye after local anesthesia with oxybuprocaine 0.4%.
Adaptation paradigms were performed without eye
movement recording. Some subjects remained in the left-
ear down position for reinsertion of the search coil
annulus after adaptation in order to minimize additional
vestibular stimulation; those in whom the annulus was
difficult to reinsert were slowly brought back to upright
position for the proper placement of the annulus, and
then immediately returned to the ear-down position.

Experimental paradigms

We measured the gain of the VVOR before and after
adaptation to visual–vestibular mismatches. During
both the VVOR testing and adaptation paradigms,
subjects were sinusoidally oscillated about the interaural
earth-vertical axis (frequency: 0.2 Hz; amplitude: ±20�;
peak velocity: 25.1 deg/s, duration: 24 cycles). VVOR
testing was performed in complete darkness, while sub-
jects were instructed to try keeping their gaze straight
ahead with respect to an imagined spaced-fixed target.
Adaptation paradigms lasted 30–40 min, depending on
the strain experienced by the subjects.

Figure 1 depicts the three different adaptation para-
digms that were used to decrease the gain of the VVOR:
(1) symmetric visual VVOR cancellation (left column);
(2) selective visual cancellation of the upward VOR
(middle column); (3) selective visual cancellation of the
downward VOR (right column).

Chair and head oscillation (upper row, ‘head’) were
identical during all three paradigms. During symmetric
visual VVOR cancellation (left column), the laser (‘tar-
get’) was head-fixed throughout the oscillation, i.e. the
eye-in-head movements (lower row, ‘eye’) were minimal.
During asymmetric VVOR cancellation, the laser was
head-fixed only during the head movement in one
direction (=trained direction), but remained earth-fixed
during the head movement in the other direction
(=untrained direction). Thus, during selective visual
cancellation of pitch-up VOR (middle column), eye-in-
head movements were minimal during upward head
movements (trained direction), whereas eye-in-head
movements were compensatory during downward head
movements (untrained direction). For selective visual
cancellation of the downward VOR (right column),
eye-in-head movements were minimal during pitch-
down head movements (trained direction), whereas eye-
in-head movements were compensatory during pitch-up
head movements (untrained direction).

Data analysis

Calibrated eye position from the right eye was processed
with interactive programs (written in MatLab; The
Math Works, Natick, MA, USA). We represent
eye positions as 3D rotation vectors in a head-fixed
coordinate system. Rotation vectors were smoothed,
and angular eye velocity was computed as described
previously (Hepp 1990). To obtain representative verti-
cal eye-movement responses, we overlaid the vertical
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Fig. 1 Training tasks to induce short-term adaptation of the
vertical vestibulo-ocular reflex (VVOR) by symmetric (left
column) and asymmetric (middle and right column) visual VVOR
cancellation. For each of the three VVOR adaptation paradigms,
corresponding head (‘head-in-space’, upper row, dashed line) and
vertical eye positions (‘eye-in-head’, lower row) of a typical
subject (S.M.) are shown for one oscillation cycle (0.2 Hz, ±20�)
about the earth-vertical interaural axis. Positive values for
position (abscissa) indicate upward head (with reference to head
upright position) and eye (with reference to primary position

gaze) positions. A small laser dot (‘target-in-space’, upper row,
solid line) was moved with the head (head-fixed stimulus) or
remained earth-fixed (space-fixed stimulus). For symmetric
VVOR cancellation (left column), the laser was head-fixed
throughout the oscillation cycle. For selective cancellation of
the pitch-up VOR (middle column), the laser was head-fixed
during the pitch-up VOR and earth-fixed during the pitch-down
VOR. For selective cancellation of the pitch-down VOR (right
column), the laser was head-fixed during the pitch-down VOR
and earth-fixed during the pitch-up VOR
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angular-velocity vectors of the cycles and computed the
median value for each millisecond (Schmid-Priscoveanu
et al. 2000). Recall that subjects were oscillated for
2 min, so the median trace was typically computed from
at least 12 cycles. In this way, eye-velocity signals during
quick phases were implicitly discarded.

Because we were expecting asymmetric gain changes
of VVOR, we anticipated that after adaptation the eye
velocity response to a sinusoidal modulation of head
position would not itself be sinusoidal. In the extreme
case, gain in one direction would be normal, and in the
other direction zero, although we expected some inter-
mediate result. A straightforward measure of VVOR
gain, such as fitting sine curves to the data, would not
give satisfactory results. We also needed to account for
any eye velocity bias that our adaptation procedure
might induce. For example, even in healthy subjects, the
eyes tend to drift vertically in the dark (Bisdorff et al.
2000; Marti et al. 2002), and since this bias drift could
have a vestibular origin, we anticipated that our
adaptation procedure could change the bias. Figure 2

illustrates the computation of the directional VOR gain
for a hypothetical case with a velocity bias of �5 deg/s.
The velocity bias was defined as the median eye velocity
of the entire oscillation cycle and separates the data into
upward and downward directions. After subtracting the
median eye velocity, the cumulative change in upward
and downward eye position was computed by integrat-
ing the de-saccaded eye velocity separately for upward
and downward directions. To calculate a directional
VOR gain, the cumulative change in eye position in each
direction was then compared by the change in head
position.

Results

Figure 3 depicts cycles of median vertical eye velocity
(see Methods) in a typical subject (S.M.) during testing
of the VVOR in complete darkness before (black traces)
and after (gray traces) symmetric (left column), selective
pitch-up (middle column), and selective pitch-down
(right column) VVOR cancellation. The median eye
velocity before (horizontal black line) and after (hori-
zontal gray line) the three paradigms is indicated as well.
Before adaptation, average gains (pooled data from all
three paradigms) for pitch-down (0.89, range: 0.88–0.90)
and pitch-up (0.74, range: 0.70–0.82) VVOR were con-
siderably asymmetric. After each of the three paradigms,
the absolute gain reduction was computed separately for
pitch-up and pitch-down directions. Symmetric VVOR
cancellation induced a greater gain reduction in the
pitch-down (absolute gain value reduced by 0.37 down
to 0.52) than in the pitch-up direction (absolute gain
value reduced by 0.29 down to 0.45). After selective
cancellation of the pitch-up VOR, the pitch-up gain was
decreased to 0.43 and the pitch-down gain to 0.59.
Accordingly, selective pitch-down VOR cancellation led
to a larger gain decrease for pitch-down (by 0.36 down
to 0.53) than for pitch-up gain (by 0.17 down to 0.57).

Figure 4 summarizes pitch-down (‘down’) and pitch-
up (‘up’) VOR gains and their differences in all eight
subjects before and after adaptation. Before adaptation,
average pitch-down (0.79±0.19 STD) and pitch-up
(0.75± STD) gains were not significantly different
(paired t test: P>0.05; upper left panel). Symmetric
visual VVOR cancellation reduced the pitch-down gain
(by 0.29 down to 0.50) more than the pitch-up gain (by
0.23 down to 0.52). Gains after symmetric adaptation,
however, were not significantly different (paired t test:
P>0.05, lower left panel). Selective visual cancellation
of the pitch-up VOR led to significantly smaller gains for
pitch-up VOR (0.50±0.16 STD) than for pitch-down
VOR (0.61±0.2 STD; paired t test: P<0.05; upper right
panel). Similarly, selective visual cancellation of the
pitch-down VOR reduced the pitch-down gain
(0.54±0.16 STD) more than the pitch-up gain
(0.59±0.12 STD; paired t test: P>0.05; lower right
panel). Median eye velocities (representing ‘‘offset’’) and
the moment during the oscillation cycle, when maximal
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Fig. 2 Computation of directional VOR gain. One cycle of
hypothetical vertical head oscillation (frequency: 0.2 Hz; ampli-
tude: 20�; peak velocity: 25.1 deg/s) with asymmetric compensatory
vertical eye movements (higher gain for downward than for upward
head movements). a Traces of eye (solid line) and head (dashed line)
velocity. Median eye velocity (dotted line) is below the zero
baseline. b Cumulative changes of eye position computed from
positive (solid line) or negative (dotted line) velocity values after
subtracting the median velocity. The final positive and negative
cumulative eye positions (circles) were divided by the correspond-
ing cumulative head positions (not shown) to obtain upward and
downward gains of the vestibulo-ocular reflex
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vertical eye position occurred (representing ‘‘phase’’)
were not significantly affected by any of the adaptation
paradigms (paired t tests: P>0.05, not shown).

In a next step we asked whether the relative gain
reduction induced by symmetric and asymmetric short-
term adaptation was significantly different for pitch-up
and pitch-down VOR. For both directions (‘up’,
‘down’), Fig. 5 depicts the percentages of gain reduction
(gain before=100%) induced by symmetric (left col-
umn), selective pitch-up (middle column), and selective

pitch-down (right column) visual VOR cancellation. The
difference between the relative gain reductions (‘diff’, i.e.
percent ‘down’ � percent ‘up’) and their average (‘mean
diff’) are indicated as well.

Symmetric short-term adaptation induced a signifi-
cantly larger VVOR gain reduction in the pitch-down
(41%) than in the pitch-up (33%) direction (paired t test:
P<0.01). Gain reductions after asymmetric pitch-up
(pitch-up: 32%; pitch-down 21%; paired t test: P<0.05)
and asymmetric pitch-down VOR adaptation (pitch-up:
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Fig. 3 Median vertical eye velocity traces (deg/s, positive values
indicate upward directed eye velocity) of one typical subject (S.M.)
during VVOR assessment in complete darkness before (black traces)
and after (gray traces) symmetric visual VVOR cancellation (first
column), selective visual cancellation of the pitch-up VOR (second
column) and selective cancellation of the pitch-down VOR (third

column). The horizontal lines indicate the median eye velocity before
(black line) and after (gray line) symmetric and asymmetric VVOR
cancellation paradigms. The traces were obtained by overlaying the
vertical angular-velocity vectors of at least 12 oscillation cycles
(0.2 Hz, ±20�) about the earth-vertical interaural axis and
computing the median value for each millisecond (see Methods)

0

0.4

0.8

1.2

0

0.4

0.8

1.2

0

0.4

0.8

1.2

0

0.4

0.8

1.2

down up diff mean
diff

down up diff mean
diff

down up diff mean
diff

down up diff mean
diff

before adaptation

symmetric adaptation pitch-down adaptation

pitch-up adaptation

ga
in

ga
in

Fig. 4 Vertical vestibulo-ocular
reflex VVOR gains in absolute
values (open circles) assessed
during oscillation (0.2 Hz,
±20�, about the earth-vertical
interaural axis) in complete
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18%, pitch-down 30%; paired t test: P<0.05) were
significantly larger in direction of the visual VVOR
cancellation than in the untrained direction. The relative
gain reduction in the trained direction was similar after
asymmetric adaptation in the pitch-up (32%) and pitch-
down (30%) direction (paired t test: P>0.05). Likewise,
the gain reduction in the untrained direction was not
significantly different after pitch-up (21%) and pitch-
down (18%) adaptation (paired t test: P>0.05).

Discussion

Tracking of a moving target with the eyes and the head
leads to visual cancellation of the VOR, mainly through
activation of the smooth pursuit system (Lanman et al.
1978; Huebner et al. 1992), although other mechanisms,
e.g. short-latency suppression of the VOR, may be in-
volved as well (Kim and Sharpe 2001; Lisberger 1990).
When visualVORcancellation is sustained, the gain of the
VOR decreases within minutes as a result of short-term
adaptation processes. Our study is the first report of
asymmetric adaptation of the humanVVOR. Specifically,
we examined the capacity for direction-selective VVOR
adaptation by visual VOR cancellation using a smooth
pursuit stimulus. We demonstrated that the human ver-
tical vestibulo-ocular reflex can be adapted asymmetri-
cally, and that upward and downwardVORpathways are
equally adaptable. Symmetric visual VVOR cancellation,
however, led to a significantly stronger gain reduction in
the pitch-down than in the pitch-updirection, althoughno
statistically significant difference between the gains for the
pitch-up and pitch-down VOR was observed before
adaptation.

Asymmetric adaptation of the VVOR and possible
learning sites

The fact that induced gain reductions, although asym-
metric, were not restricted to the direction of the visual
cancellation stimulus, indicates an interdependence of
mechanisms controlling the pitch-up and pitch-down

VOR gains in humans. In monkeys, Hirata and
coworkers (Hirata et al. 2002) studied whether upward
and downward VOR gains can be modified simulta-
neously in opposite directions. Animals were exposed to
visual–vestibular mismatch paradigms using optokinetic
full-field stimulation that increased the VVOR gain in
one direction and decreased the VVOR gain in the other
direction, and the results indicated that the VVOR gain
mechanisms are only partly interdependent between up
and down. Our study comes to the same conclusion, but,
in addition, demonstrates that visual VVOR cancella-
tion by fixing upon a smooth pursuit stimulus is suffi-
cient to asymmetrically adapt VVOR gains, at least in
humans. In monkeys, it has already been shown that the
tracking of a foveal pursuit stimulus is effective in
adapting the horizontal VOR (Miles and Lisberger
1981a), but asymmetric VOR adaptation by pursuit
stimuli has not been attempted so far.

It is well known from lesion studies that impairment
of the flocculus (FL) abolishes the ability to modify VOR
responses (Zee et al. 1981). The exact mechanisms by
which the FL is involved in VOR learning is debated (Ito
1972, 1982; Miles and Lisberger 1981b; Watanabe 1984,
1985; Lisberger et al. 1994a, b; Hirata and Highstein
2001, 2002). According to the so-called multiple sites
hypothesis (Miles and Lisberger 1981b; Lisberger et al.
1994a, b; Hirata and Highstein 2001, 2002), other sites
for VVOR learning include floccular target neurons
(FTNs) in the vestibular nucleus complex and in group
Y, which receive inhibitory input from floccular Purkinje
cells (PCs; Chubb and Fuchs 1982; Partsalis et al. 1995a,
b; Blazquez et al. 2000). Probably, these FTNs are pro-
vided by the FL with an error signal containing infor-
mation on direction and magnitude of gain changes
(Hirata and Highstein 2002). Most PCs in the cerebellar
flocculus are sensitive to gaze-velocity signals (Miles et al.
1980; Stone and Lisberger 1990), and respond preferen-
tially to smooth pursuit eye movements during VOR
cancellation, but modulate only a little during normal
VOR in the dark. With regard to our adaptation para-
digms, visual cancellation of the VORwas most probably
achieved by activation of the smooth pursuit system.
Therefore, an important role of gaze-velocity-sensitive
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floccular PCs in the adaptation process is highly
plausible.

Mechanism of asymmetric VVOR adaptation
by symmetric VVOR cancellation

Symmetric short-term adaptation of the VVOR induced
by visual cancellation reduced the pitch-down gain sig-
nificantly more than the pitch-up VOR gain, i.e. sym-
metric visual VVOR cancellation was more effective in
the downward direction. How can this predominance of
the downward visual VOR cancellation be explained?
Possibly, this finding could reflect asymmetrical direc-
tional sensitivities of involved floccular PCs. Most gaze-
velocity PCs roughly exhibit either horizontal or vertical
on-directions (Miles et al. 1980; Stone and Lisberger
1990; Fukushima et al. 1999). Interestingly, the large
majority of vertical gaze-velocity PCs have downward
on-directions, i.e. they increase their firing rate in
response to downward eye movements during smooth
pursuit or VVOR cancellation, while the resting rate
decreases during upward eye movements.

With regard to our VVOR adaptation paradigms, it
can be assumed that the majority of vertical gaze-
velocity-sensitive floccular PCs increased their firing rate
during downward VOR cancellation and decreased their
firing rate in response to upward VOR cancellation.
Since symmetric VVOR cancellation induced a signifi-
cantly greater gain reduction for the pitch-down than for
the pitch-up VOR, one could hypothesize that the
increase of the PCs firing rate during downward VOR
cancellation was greater than the decrease during
upward VOR cancellation. This notion is supported by
the finding that the change of simple spike activity in
vertical floccular gaze-velocity PCs in monkeys during
vertical smooth pursuit was larger in the on-direction
(downward, increase of firing rate) than in the off-
direction (upward, decrease of firing rate; Stone and
Lisberger 1990). In other words, the sensitivity of these
cells is smaller at lower spike frequencies. Although
Stone and Lisberger did not test the visual VVOR sup-
pression in their study, it seems reasonable to assume
that vertical floccular gaze-velocity-sensitive PCs show a
similar non-linearity of their discharge modulation in
response to upward and downward VOR cancellation as
for smooth pursuit. The combination of such non-linear
discharge modulation and the asymmetric directional
sensitivities could probably explain, why, in our experi-
ments, the symmetric visual VVOR cancellation by the
smooth pursuit system led to a greater gain reduction in
the downward direction.

Conclusion

We have shown that the human VVOR system is
capable of asymmetric adaptation, and that during

symmetric visual VVOR cancellation pitch-down adap-
tation is more effective.

Our results provide evidence for interdependent
mechanisms for control of pitch-up and pitch-down
VOR gains. In the cerebellar flocculus, one of the main
neural structures involved in the VVOR gain control, the
combination of the strong asymmetry in on-directions of
vertical floccular gaze-velocity PC cells and their direc-
tion-selective non-linear response pattern may account
for the observed asymmetry in gain reduction after
symmetric visual VVOR cancellation. To further explore
this hypothesis, fMRI studies in humans could be useful.
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