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FORBEBWORD

These notes are based on lectures given by one of
the authors (N.S.) at Duke University in 1968/69. They
contain some of the grouptheoretical tools which have

turned out to be usgeful in many branches of physics.

We have tried to develo» these Hools in as self-contained

a manner as possible, using a reascnably modern mevhematical

language. Tnis shceuld facilitete voe reader to consult also

books writiten mainly for msvhemavicians.

One of the eauthors (N.S.) hed the privilege of
many informztive discussiong on the subject with
Professor L.C. Ziedenharn. Ve are also indepted to L.wWeaver

who has cleaned up a Iirst version of the manuscript.
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CHAPTLR T SDMISIMPLE ACSOCIATIVE ALGLDRAS

1. Fundamental Concepts of Algebra

We begin with a series of definitions which play an important role

in the following chapters.

Definition 1 A semigroup is a system (3, .), where S is a set

and . is a binary operation on S (mapping from

S x § into S) which satisfies the associative law:
(a .b) .c=2a.(b.c).

We shall usually omit the . and write simply ab
instead of & . b. A semigroup with 1 (often called
a "monoid") is a system (S, 1, .), where (S, .) is
a semigroup and 1 is a designated element of S
satisfying the identity: 1 a = a = a 1.

Definition 2 A group is a system (3, l,ml

, .), where (S, 1, .)
. . . -1 . X
is a semigroup with 1 and is a unary operation

(—lmaps S—» S) such that a a -1 _ 5 - a7t

An abelian group is a group satisfying the commutative

law 2 b = b a. An abelian group is frequently written

as (S, 0, -, +).
Definition 3 A ring (associative with 1) is a system (3, 0, 1, -,
+, .), where(S, 0, -, +) is an abelian group and

(3, 1, «) is a semigroup with 1, satisfying the
distribuvive laws a (b+c) = a b + a c,

(a+b) c=a c + b c.

A ring in which every element a # 0 is invertible
(relative to multiplication) and which contains at

least two elements is called a field.
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Definition 4 A right R-module MR consists of an additive abelian

group M, a ring R, and a mapping M x R — M, denoted

by juxtaposition, such that

(ml + m2)r = mT + mr, n (rl + r2) =mr +mr,

m (rl r2) = (m rl)rz, ml=m

for all m, mzeM and Ty, T cR. A left R-module M

2 R

is defined symmetrically.
Examples:

1. If R is a field, MR

2. If M = R and the mapping M x R — M 1s taken to be

is usually called a vector space.

multiplication, that ismr =m . r, then we have
the right module RR'

A

Definition 5 An algebra A over a field ¢ is a ring A which is at

the same time a vector space over @¢. Moreover the
scalar multiplication in the vector space and the
ring multiplication are required to satisfy the axiom
« (ab) = (za) b=a (« b), ce ¢, 2, b €A,

Definition 6 Let A be an algebra over g, and let M be a vector

space over g. We say that M is a left A-module (or

a module over A) if (i) M is a left a--module, A con-
sidered as a ring and (ii) (a¢ a) m = a (am) =

a(c m) for all « € ¥, a £€ 4, m € M.

Let M, N be R-modules. We use the notation HomR (M,N) to deno&é the
set of all R-homomorphisms of M into N, that is, the set of all
mappings f: M =8 N such that £ (m

1+ m2) = f (ml) + f(mz),

f (rm) = r f(m); m, €M, r €R.

The set HomR(M, N) forms a subgroup of the set Hom (M, N) (homo-
morphisms of M into N, M and N considered as abelian groups), and
HomR(M, M) forms a subring of Hom (M, M). We call HomR(M, M) the

ring of R-endomorphisms of M, or sometimes the centralizer of the

R-module M, because the elements of HomR(M, ) are precisely those
endomorphisms f of M which commute with all the endomorphisms of

r. :m—> rm determined by the elements of R. Similarly one de-

L
fines the algebra of A-endomorphisms of a module M over an algebra.
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Definition 7 Let A be an algebra over a field ¢ and M a vector

gpace over g. A representation of A with represen-

tation space M is an algebra homomorphism

T: A — Hom ﬁ(M’ M), that is, a mapping T which satis-
fies T(a + b) = T(a) + T(b), T(ab) = T(a) T(b)

T(a a) = aT(a), T(e) = 1, a, be A, « € ¢,

where e is the identity element of A,

Let T: A —» Hom ¢(M, M) be a representation of an algebra A over 4.
Then, for each acA and m&l, we define
am="T(a) m (1)
and observe that, because of the properties of the representation T,
we have for all a, a'€A, m, m'e M, aed,
alm+m') =am+am', (a+a')m=am+a' m (2)
(aa')ym=a (a'm), em=m, (exa)m=a (am)=2a (amn)
where e is the identity element of A. It is clear that the definition
(1) turns M into an A-module. Conversely, let IM be a 4 - space (vector
space over @) which is a left A-module for an algebra over ¢. For ezch
a€h, define a mapping T(a): M -—> 1l by setting T (a) m = a m,
a &A, m e M. Then T(a) & Hom ¢(M’ M) for each a € A, Moreover a —> T(a)
is a representation of A. So representations and modules are essen- |
tially the same. We shall in the following usually state and prove the ‘

theorems in the language of modules.,

Definition 8 Let M and M' be left A-modules where A is an algebra

over a field 4. The modules i and M' are said to be

A-isomorphic if there exists a vector-space iscmorphism

2 of M zuto M' such thet for all a & A and m &€ M we
have a(S m) = S(a ™)., Clearly, two modules are A-iso-
morphic if and only if the representations afforded

by them are equivalent.

Definition 9 Let M be a left A-module over a g-algebra A where ¢ is

a field. A @-subspace N of M is called a submodule if
an € N for all a € A and n € N. For example, the sub-

modules of the left regular module ,A are the left

A
ideals of A.



2. Direct Sums of Modules
If Ml and M2 are submodules of the R-module M (let all R-modules
be left modules), we define the sum of M

Ml +M2 =yt oyl mlé_Ml, m2EME}.

1 and M2 by

Then Ml + M2 is agein a submodule of M and is the smallest sub-

module which contains both Ml and Mz. The intersection le‘\M2

the largest submodule contained in both Ml and MZ'
Now let Ml’ oo Mk be submodules of the R-module M. We write
M = Ml ® ... (j]ﬂk and call M the (internal) direct sum of

M M if

l’ ¢« o0 k
(l)MZMl+oo. +Mk

t ..o tmo= O, my E;Miy implies that each m; = 0.

is

(ii) my
It is easily verified that if (i) holds then (ii) is equivalent

to either of the following two conditions:

. B .
(ii") Mif\(Mi oo+ My g o+ M L1t T Mk) = O for each i.
(ii'') Every element m € M can be expressed uniquely as a sum
m = my S me, My G;Mi.
Now let Ml’ oo Mk be a given set of R-modules, not necessarily

submodules of a common R-module. We define their (external) direct

*
sum M, @ ... @M =M to be the set of k-tuples (ml, cee s ),
m, eiNi, where addition is defined componentwise, and
*
r (ml, cees mk) = (r Myy eey rmk), r &€ R. Then M is an R-module;
if we set M', = {(0, ..., m;, O..., 0); m, €M, }, then M'  is
i o i i i
a submodule of M, and M'i = Mi' Moreover M is the internal di-

rect sum of the submodules M'i.

If N is a submodule of M, the factor module M/N is the left

R-module whose underlying commutative group is the totality of

cosets {n1+-N'} of N in M, and the module composition is de-
fined by
r (m+ N) =rm+ Nj (%)
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it is well defined because N is a submodule. The mapping 7:
m—> m + N, which maps m & M onto the coset containing it,
is by (3) an R-homomorphism of M onto M/N, called the natural
homomorphism of M onto Ii/N.

. Classical Isomorphism Theorems

For completeness we also prove the classical isomorphism theo-

rems.

Proposition 1

Let M, N be R-modules, and let f: M — N be an R-homomorphism
of M onto N. Let M, = f—l(O) be the kernel of f; then M, is a
submodule of M, and M/M; >N,

Proof:

Ml is obviously a submodule of M. Let m be the natural mapping

of M onto M/Ml and define (see the diagram)

£: M/M, —> N by Mo m o WH
f:n (m) = f (m) - -
f f f omnm =
1) /
N

This is a well defined mapping since the elements of any co-

set m + Ml are mapped by £ to a single element. f is a R-

homomorphism. For instance

E(r(m+ml))=f(rm)=rf(m)=rE(m+Ml>.

Proposition 2

Let N be a submodule of the R-module M. uvery submodule of
M/N has the form L/N where NcLcM, and M/L ¥ (M/N)/(L/N).



Proof:

Let m: M —> 11/N the canonical epimorphism (homomorphism onto).
Any submodule I of n(M) = M/N has an inverse image L = n—l(I)
in M, hence I = n(L). Clearly L is a submodule of M. Further-
more N = n—l(O)CZL, and so we may write n(L) = L/N. Now let

' (M) ———> n(M)/n(L) be the canonical eipmorphism, then

' o s M —> n(M)/n(L), and the kernel of this mapping is

(n' o n)-l(o) = n”l(n(L)) = L ., The result now follows from
Proposition 1.

Proposition 3

Let M, N be submodules of a common R-module. Then
(M + N)/M Y N/MaN .

Proof:

Consider the canonical epimorphism n: M + N —> (M + N)/M

and the monomorphism (injective homomorphism) X : N —» M + N.
Then 1 o X has kernel MAN and image n X(N) = n(M) + n (N) =

n (M + N) = (M + N)/M. The result now follows from Proposition 1.

Definition 10
An R-module M is said to be indecomposable if M # (0) and if it

is impossible to express M as a direct sum of two non-trivial
submodules.

Remark:

Since the left ideals of a ring R are the submodules of the
module RR we say correspondingly that a left ideal is inde-
composable if it is impossible to express it as a direct sum

of two non-trivial left ideals.

Definition 11

A left R-module M # (0) is called irreducible if M contains no

non-trivial submodules, whereas a module which contains a non-

trivial submodule is called reducible.



Definition 12

A left R-module M is said to be completely reducible if every

submodule is a direct summand; in other words, for every sub-
module N there exists a submodule N' such that M = N@ N'.

The following theorem is important.
Theorem 1.

The following two statements about an R-module M are equivalent

(i) M is completely reducible

(ii) M is a direct sum of irreducible modules.

Proof:
We prove this theorem only for finite dimensional A-modules,
where A is an algebra (this is all we need in the following).

Assume M :(E)Mi, My irreducible modules. Let N be a submodule
i

of M. If dim N =dim M, N = M and M = N @ (0). We now suppose

dim N<dim M and we may assume the theorem for submodules N

such that dim N,>dim N. Since NC M = @Mi there is an M,
i

1

such that NE_QﬁN} Consider the submodule Mif\N. This is a
submodule of the irreducible module Mi° Hence either Mf“\N = Mi
or Mif\N = 0., If Mif\ N = Mi’ N EZMi contrary to assumption.
Hence Mif\N‘z 0 and Nl
induction hypothesis to conclude that M = Ni_C)N'l’ where N'
is a submodule, Then M = N @ Ny ® N', = N @& N' where
N' = Mi ® ]ﬂ'l.

=N + Mi = N(@‘Mi. We can now apply the

1

Conversely assume that M is completely reduci ble. Let Ml be

a submodule # O of minimal dimension. Then we have M = Ml ® N
where N is a submodule. We note now that the condition assumed
for M carries over to N, Thus let P be a submodule of N.

Then we can write M =P & P', P' a submodule. Then by

*), (we denote for a moment the sum

M, € Mby M, + M, =M LJMZ), N = MNN =

1’ 72 1 2 1
(P @ P')AN="PuU(PnlN). Since PN(P'nN) € PNP' = 0O

Dedekind's modular law

of two vectorspaces M

*) see next page.



we have N = P @ P'' with P'' = P' N. We can now repeat for
N the step taken for M., Continuing in this way we obtain,
because of the finite dimensionality that M = Mj_GD... ® Dﬂf
This completes the proof.

Dedkind's modular law says: If Ni g;N3 then NlL/(sz\NB) =
(NluJNz)r\NB.
Proof:

c ? I < impli c
N, & N3 and Ngr\N3 < N, S.NlLJNZ implies NlLJ(sz\NB) c
(Nl\)NZ)/\ NB' On the other hand let x e.N3 f\(NlL)Nz),
that is x = X, + X, with Xs G'Ni' Xy = X - leN3 since

g . S .
Nl < NB, hence X, € N2 F\h3, This implies x €N

g.e.d.

lu(N2[\N3)/

Next we show that the decomposition of a completely reducible
finite-~dimensiongl A-module M into irreducible submodules is

essentially unique. To prove this we need the following facts.
Lemma 1: Let M be a completely reducible A-module

o : X .

M = FH_GB"‘ @)Mn, Mi irreducible.

Let N be a submodule of M. Then M is the direct sum
of N and some of the Mio

Proof: Consider NNnM,., Since M, is irreducible er\N = 0 or

1 1
— ) v < 1 7 = —
er\N = Ml and hence Ml < N. In the first case hl =N + Ml =
N @& Nﬁf Now we consider NlF\MZ and repeat the same argument.
In this way we obtain M = N @ IMi @ ... E)Mi , where the
1 u

Mi are those for which the first case in the above alter-
k
native happens to be true.

Lemma 2: Suppose that an A-module M can be decomposed in the
following two ways:
— — Tt
M_Ml @ M2_Ml ® s

are submodules. Then M. = M

where M 5 5 o

1 M2’ and M!'
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Proof: Consider the projection ﬂ'22 M - M'2 which is de-
fined by the second decomposition. The kernel of this ho-

hence M, ¥ M/, Do

momorphism is Ml’ 5

"
Now we prove

Theorem 2.
Let M be an A-module and let M = M, @ ... M = N, @ ... @V

be two decompositions of M into direct sums of irreducible

submodules. Then m = n, and there exists a permutation
Lagy »oe dgdof {1, o0, n Y such that

0N N
Ml = lvjl, e ooy Ml’l = le’l.

Proof: Assume m < n. We show a little bit more: For a sui-

table relabeling of the Nj’

N s - W T
Nj —MJ., j=1, ... mandM_Nl@)..,@hj@Mjﬂ@ PO

for j =1, ..., m. For j = m this implies m = n. (5)

Equation (5) is true for j = 1. We suppose, that we already
know,* that after a suitable relabeling of the Nj’ Nj é’Mj
for j =1, ..., k-1 and that

M=-N®...0 N,_ @O @..OU (6)

. N N 1
Now we apply lemma 1 with N = Ny @...® Ny @ Jk+l ®... @ M
1 @ .. CDNk,tO conclude
that M is the direct sum of N and some of the Nj with j> k - 1

M:Nl®...® Nk__l@(@' Nj) @ Mk+l®“.® M

and the second decomposition M = N

i>k -1
Comparison with the decomposition (6) shows, using lemma 2,
that Mk is isomorphic to (' N.. Hence this sum is ir-
jy k-1

reducible and contains only one term which we label by k.
This proves that (5) holds for j = k and by induction our

statement is proven.
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. The Radical of a Finite-Dimensional Algebra

If Bl and 32 are subspaces of an algebra A, then we write

Blf\B2 and B. + B29 respectively, for intersection and space

1
1 and B2. The latter is just the collection of

elements of the form bl + b2, b; € Bi' We define Bl' B2 to
be the subspace gpanned by all products blb2’ biﬁiBi. It is
immediate that this is the set of (finite) sums

jé: byj bpys by4 €.
J

It is trivial to verify the following equalities for subspaces

spanned by B

(1) By (BzBB) = (Ble)B3

(1) By(B, + B3) = By B, + BB,

(iii) (B2 + BB)Bl = B2Bl + B3Bl .
A subspace B is a left-ideal of A if and only if AB < B.
Clearly the intersection and sum of two ideals is an ideal
and (i) for B3

duct of ideals (ideal means left, right, or two-sided ideal).

= A shows that the same is true of the pro-

An ideal N is called nilpotent in case there exists an integer

k such that Nf = 0.

Proposition 4

The sum of any finite number of nilpotent left ideals is
nilpotent.

Proof: Let N, and N, be nilpotent left ideals in A; the sum

1 >
N, + N, is also a left ideal, Let N, = N,¥ = Ov Then every

1
. k+r . .
element in (Nl + N2) is a sum of products XyeeoX 10
which either at least k factors belong to Nl or at least

r factors belong to N In the former case, the above pro-

2.
duct may be written as
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where X, , X. , «.. X. € N, and s > k. Each group in
i, i, ig 1
paréuntheses belongs to Nl since Nl is a left ideal. However,

the product of any s elements of N, is 0, and so the above

1
product is 0. A similar argument holds when at least r fac-

tors belong to N2. This completes the proof.

From now on)the algebra A is assumed to be finite dimensional.

Proposition 5

In A there exists a maximal nilpotent left ideal N. The
ideal N is a two-sided ideal and contains every nilpotent

left ideal and every nilpotent right ideal.

Proof: Let N be a nilpotent left ideal of maximal dimension.
Assume that a nilpotent left ideal Nl is not contained in N.
Then Nl + N ;i N is according to Proposition 4 a nilpotent
left ideal which contains N. This is in contradiction to
the assumption. Now NA is also a nilpotent left ideal since

(NA)S = (NA) ... (Wa) S NN ... NA = N%a,

hence NA < N. This shows that N is also a right ideal. If
d is any nilpotent right ideal in A, the above reasoning
shows that AJ is a nilpotent right ideal, it clearly is a
left ideal and so J C AJ C N.

Definition 13

The maximal two-sided nilpotent ideal N of Proposition 5 is
called the radical of A and is denoted by rad A.

Definition 14

We say that A is semisimple if rad A = O.
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Proposition 6

The factor algebra A/rad A is semisimple.

Proof: Every left ideal in A/rad A is of the form (see
Proposition 2) I/rad A for some left ideal I of A con-
taining rad A. Then I/rad A is nilpotent in A/rad A if
and only if some power of I is contained in rad A, and
this can occur if and only if I is nilpotent and so is
contained in rad A. Therefore A/rad A contains no nil-
potent right or two sided ideals either. Hence A/rad A is

semisimple.

Orthogonal Sets of Idempotents

Let A be a direct sum of left ideals A = L, @ L, ®@...® L

L; # 0 . Then we may write 1 = e, + ... + e, e; €1y,

1
for some set of elements‘{ei} of A. Clearly

ej =€ e +. . +ese, eje; € L. Since Iy @... @L,
is a direct sum, this yields €8y = 0, eje2 = 0y ouo
ejej = ej, ej ej+l =0, .., ejen = 0 . Therefore

€51 = %14% (7)

Let us show that Li

Obviously we have A

4 e;, which will imply that e, £ 0.

Il

A eq + A 62 + ... + A €, and

A ei'C_I&f This implies A e, = Li'

Definition 15
A set of idempotents {eig satisfying (7) is called an ortho-

gonal set of idempotents.
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Conversely, let {ei} be an orthogonal set of idempotents

with e, + ... + e =1 and let L, = A e.,, then A = 1L. ® ...
n i i 1

1

This is seen as follows. For an arbitrary element a € A

amayl=ae + ... +ae, (8)

and hence

A=1L + ... + L. (9)

The sum in (9) is direct, since the representation of an

element as a sum a = Xlel + ..

plication with ej from the right gives aej = Xjej.

. + x e is unique. Multi-
nn

What has been said so far in this paragraph cor-
respondingly holds for right ideals. Hence, if we have a

decomposition

A:Ll @... @Ln, Lieri’ (lO)

then A is a direct sum of the right ideals Ri = eiA
A— = Rl @ e o e @ Rnc (ll)
If the Li in (11) are indecomposable then the same is true

for the R; in (11).

Proof: Suppose that -

1 1 1
—_ 1 " A 3
thenA_elA ® elA @ ek @ ... D enAw1th
— 1 " t 1" 3 -
e, = €'y + e 1 { €15 €95 €5y ee e, } is an ortho

gonal set of idempotents and hence L., = Ae'l ) Ae"l, in

1
contradiction with the assumption,

Next we consider direct decompositions of A into two-sided
ideals. Let

A=A @... DA

be a decomposition of A intc two-sided ideals Ai, then
2

AT = Ai and AiAj =0 for i # j.

. (12)

is decomposable, R, = e A = R'y ® R"l,
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Proof: For i # j ALA.CA.NA, =
=M S S
has a unit element AlCIAlA = A

0. Furthermore, since A
On the other hand A° CA.,

2 1
hence A 1= Al, ete.
Now assume that A is a direct sum of subspaces Ai
A=A @...® 4, (13)
2

such that A", = A, and AiAj = 0 for i # j. Then the A
are two-sided ideals.

Proof: AA. = (A
i 1
Ai _A. = Ai’ q.ecdu

@ ... D Ah) A, = A, and similarly

An ideal of an A, in (13) is an ideal of A.

Proof: Let R be, for instance, a right ideal of A then

RA:R(A]_@.'. @An) ERA gR’ q.ead.

l’
1
Let R be a right ideal in 4 and assume a decomposition (12)

of A into two-sided ideals. Then

R:R_AZR_A. +Qu¢+RA .
1 n

This sum is direct since RAiq;Ai. Furthermore, RAiA = RAi,

hence RAi is a right ideal.

The last two remarks show that we know the ideals of A if

we know those of the Ai. Hence we only have to investigate

the ideals of indecomposable algebras.

Two right ideals which are # 0 and are contained in diffe-
rent components Ai in (12) cannot be isomorphic. This fol-
lows from the fact that for a right ideal

RCA,, RA, = 0 for i = 2, ... n, but Ri, £ 0.

We now consider the case where the two-sided ideals in (12)
are indecomposable. In this case the Ai in (12) are uniquely

determined up to a permutation. Thus let A = A'l @ ... ‘Ak
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be another decomposition of A into a direct sum of indecompo-
sable two-gided ideals. Then

Ay = AA = AAYS @... ® AiAk . Since A, is indecompo-
sable only one summand on the right hand side is different
from O. Hence Ai = Ai A'j for a certain j. Similarly

AA'" . = A", = AiA'j’ which implies Ai = A'j. From this the

J J
proposition follows.

We now add a few remarks about the center C of A.

Definition
The center of A is the set of elements which commute with
all elements of A.

The center C is a commutative subalgebra of A. Let us assume

a decomposition (12) for A and set

¢ =0Cy @...0 C cigAi (13)

n7

Then Ci is an ideal in C, To see this we choose c¢c € C and
write ¢ = ¢yt e.. tCoy Cy € Ci’ From ca = c,a + ... +cpa

=ac=ac, + ... +ac_, we conclude c.a = ac., hence
1 n i i

c. € ¢, or C. S qC.
i i
This implies Ci = Air\C, showing that Ci is an ideal in C.

Conversely, suppose that C = Cl ® ... Cn’ where the Ci
are ideals in C. Let 1 = e; + ... + e , e, € C; . The {ei}
form an orthogonal system of central (ei € C) idempotents.
If we put Ai = eiA = Aei, the Ai are obviously two-sided

ideals and from earlier remarks it follows that

A=h @...0 4, (14)
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We also note that Ci = eiC. This follows from

C=e.C+ ... + e Cand e.C & C.. Hence
1 n i i

A, = e/h =¢e,CA= C;A . (15)

It is clear that the Ci are indecomposable if and only

if the Ai are indecomposable.

The Structure of Semi-Simple Algebras

We recall that a left A-module M is completely reducible

if every submodule of M is a direct summand of M.

Theorem 3
Let A be an algebra. If

A is semisimple.

AA is completely reducible, then

Proof: Let N be the radical of A. Since N is a left ideal

of A, it is also a submodule of AA, and therefore

A=N @ N' for some left ideal N' of A. Then
l=e+e', ecN, e'&€ N', with e2 = e. Since N is nil-
potent e = e2 = e3 = ... = 0 and therefore N = 0. We now

prove the converse.

Theorem 4
If A is a semi-simple algebra, then AA is completely re-
ducible.

Proof: Let L be a minimal left ideal. This is by definition

an irreducible submodule of AA different from zero. Clearly
L2 C L and L2 # 0 (since rad A = 0). Hence there exists an
element a € L with L a # O. But L a is a left ideal con-

tained in L and consequently L a = L. Now consider the set
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i b€ L: bas= Oj;. This is a left ideal different from

L and hence is equeal to 0. Since L a = L there exists an
element ¢ € I with ¢ a = a and hence (c - 02) a = 0.

This implies ¢ = 02 and ¢ is an idempotent. Clearly Ac

is a left ideal contained in L and thus Ac = L = ILc.

An arbitrary element x € A can be written x = xc + (x - xc).
The set { x - xc } is a left ideal L' and A = L + L'.

This sum is direct. Thus suppose that y € I N 1L', then

y =XC = Xc2 = yc, and y =X - XCc, hence yc =0 = y.
Consider I D L

I=ANI=(L ® I')YNI=1L @ (L' I).
The last equality follows from Dedekind's modular law.

So far we have shown:

Every minimal left ideal of A is generated by an idempo-
tent element and is a direct summand of every left ideal
which contains it,

Using this we proceed as follows. Let Ll be a

minimal left ideal of A. There is a L'1 such that

A=1L ® L'y .If L', # 0, there is a minimal left
. . .
ideal Lan L 1

process, we obtain A = () L, L; minimal, hence ,A is

and L'l = L2 ) Iﬁz . Repeating this

completely reducible. Theorem 3 and 4 prove the

Pirst Structure Theoremn.

An algebra A is semi-simple if and only if AA is a com-
pletely reducible left A-module.

Definition 16

An algebra is simple if the only two-gided ideals are

the trivial ones.
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Let us show at once that a simple algebra S is semi-
simple. We note that N = rad 5 is a two-sided nilpotent
ideal of S and that consequently N = (0) or S. The unit
element cannot belong to the nilpotent ideal N, hence

N = (0) and S is semi-simple.

We now prove the

Second Structure Theorem,

An algebra is semi-simple if and only if 4 = 4, @ ...@An

where the Ai are two-sided ideals which are simple algebras.

Proof:

Let A be semi-simple. We show first that if B is a two-
sided ideal, then there exists a two-sided ideal B' such
that A =B (® B' . OSince AA is completely reducible,

there exists certainly a left ideal L of A with A =3B ® L.
But BLE BN L = 0, hence (LB)° = IBIB = 0. Since A is
semi-simple this implies LB = 0. This means

IA=L (B ® L) = ng L, which proves that L is a two-
sided ideal. Now let A, be a minimal two-sided ideal. As

1

we have just shown, there exists a two-sided ideal A'l

such that A = A @ Aﬁl . We have seen earlier that every

is

Ay - sub-ideal is an ideal of A. Consequently, as Ay

minimal, it is also simple. Moreover, A', is clearly semi-

1
simple. Hence, induction on dim A implies that
A'l = A2 ® "‘C)Ahf where the Ai are two-sided ideals

and simple algebras. Therefore we have A = AJ_C)... C)AYN
Ai simple and two-gsided ideals. Conversely, suppose that
A=A @...®» A , where the A, are two-sided ideals
which are simple algebras. Since the A.Ai are (by the first
structure theorem) completely reducibld the same is true
for AA (give the details of the argument). This proves

that AA is semi-simple,
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Remark:
Note that the decomposition A = (E)Ai is unique as shown

on page 15.

We study now simple algebras, since every semisimple al-

gebra is a direct sum of simple algebras.

Let A be a simple algebra. First we show that all minimal
left ideals of A are isomorphic. This follows from the
following

Lemma 1

An irreducible left-module M over a simple algebra A is

isomorphic to every minimal left ideal of A.

Proof: The A-module M is faithful (aM = O, a € A, implies
a=0). Thus let I = {a& 4: al=0 3. Clearly I is
a two-sided ideal and hence I = O or A. Since M # O we
conclude that I = 0 (4 has a unit element). Now let L be
a minimal left ideal of A. Since M is faithful and L # O
there exists an element m € M such that L m # 0. Since
AL & 1L, the set Lm is a submodule of M and hence equal

to M (M is irreducible). This shows that the mapping
 : p—> pm, forall p € L

is an A-module-epimorphism of L onto M. The kernel is an
ideal in L different from L (since Im # 0), hence equal

to O. This proves the lemma.

Since the minimal left ideals are irreducible left A-

modules, we conclude that all minimal left ideals of a

simple algebra are isomorphic. Furthermore, we see that

a simple algebra has precisely one irreducible module

(up to isomorphism).

Definition: A nonzero ring (with unity) is called a skew -
field if every nonzero element has an inverse.
A commutative skewfield is called a field.
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Third Structure Theorem

Let A be a simple algebra. Then A ¥ Hom . (M, M) for
some finite-dimensional right-vector space M over a
skew field £2 .

Proof:
Since AA is completely reducible we can decompose A& into
a direct sum of minimal left ideals.

A=1 @...® L- (16)

We know that the Li are all pairwise isomorphic. Let us
put 1 = e t .ot ey e é,Li, and Ri = eiA. Then we
know that

A —_—Rl @!.a @ Rm, (17)
and that the Ri are minimal right ideals. Let
Aik = RiLk = eiALk = eiLk = eiLkek = eiA € Clearly
i,k

The sum in (18) is direct: Consider

— N

2, G5y 0y A5y € Ay

i,k
Blearly Zdik =0 (D d,, €R,). This implies

k k
Ay = 0 (dik:E'Lk)' Since Aey A = A (two-sided ideal # 0)
we have
Ay B = RLR, = R, L e A = RA € A=R, A=R, (19)

Note that this implies A, # 0. Next we prove:
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An A-isomorphism ¢ : Rk S jRi can be represented as

o) (Xk) = a5, %, % € R, a5, € A, - (20)

To show this we put ¢ (ek) = a;, € R,. From

2
85y € = @(ek) e, = o(e k) = @(ek) = 8 follows that
aikegAik. Now for x, &€ Ry, @(xk) = @(ekxk) = @(ek) x =
= a

Xk . The element a; in (20) is uniquely determined,

ik k
because @(ek) = 8., € = 85y (aik = e, a ek). Conversely,

for every a;, € Ay, 8, # 0, the mapping
X, — a4y X Xy E;Rk, defines an isomorphism from
Rk onto Ri. These remarks show sspecially that the elements

of Aii are in one-to-one correspondence with the auto-

morphisms of Ri

nJ
Ay, = hut (Ry), (21)

hence Aii is a skewfield. Now let W:be the identical

automorphism of Rl’ [ some fixed isomorphism of Rl
Vi

onto Ri and

- A
Pikz [ T R, —™7 Ry (22)
Clearly

l-‘-‘ik rﬂkm - r;; ) (23)

1

Let
(x) = egy X » ¥ € By, 0, € Ay (24)

Then from (2%) we obtain . Furthermore,

e., e = e,
ik “km im

€, €5 = €445 €. €. = € . . The multi-

since ej.kE Aik’ ij 73 ij ij ij

plication table for the eij is the same as that of the
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nxn matrices which have a 1 at position (i,j) and zeros

everywhere else. Now consider the mapping All-——?' Aii

11 E— €i1 291 ©14 -
morphism. For instance €1 211 P17 €11 % ©:1 #1171 ©11%11

The kernel of this homomorphism is zero: e 0

given by a This is a ring homo-

b b

11%11°
i1 211 11 T

e, = a :-Oo

implies e i1 11

1i i1 %11 C11

We define

O =ia pa=a, f ... +a

811 € #4970 845 = eilalleli}
(25)

mm 8

It is easy to verify that the mapping

aqq —_—> @ =a;;+ ... +a 1isa ring isomorphism from

All onto (). Since A is a skewfield we conclude that

11

() is a skewfield. From eik o = eik akk = eikeklallelk =

= eilall elk’ and o eik = aii eik = eil all elk’ we

Iud \
conciuce 4 €y = €4 @ , for all a e S) . Furthermore
we note eik.fz = eik Akk = eik Rk Lk = Ri Lk = Aik' Hence
A = . 26
ey S (26)
i,k

Now we define the following mapping from A tojﬁ} where
.flrmmlis the complete matrix algebra over the skewfield_(l
a:E ik @ g 2 (0 € Qg . (27)
i,k .
It is clear that this is an algebra isomorphism, hence

Ag.ﬁgmn. (28)

If A is a simple algebra over an algebraically closed field

@, then we will show that A'§'¢nxn, It is not difficult *to

conclude this from the results obtained so far. We prefer
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however, to derive this directly. We use the same no-
tations as in the proof of the last theorem. We have

seen that for x € Ry and O ~¢»all € Aq
X —> a;q X defines an automorphism of R, onto R,.

1 1
Furthermore, as we have seen, two different elements

the mapping

214 € All give different automorphisms and one gets in

this way all automorphismsof R The second part of Schur's

l.
lemma (Curtis-Reiner S$.181) implies that every automorphism
is a multiple of the unit transformation (here we use the

fact that @ is algebraically closed} Hence, for all
X € A, €1y X €)1 = % €11 §EE¢ (ell = el). From this we

will now conclude that every x Q;Aik is a multiple of €y
k? 11 X & € Ay . Hemce ep; X ey = feo,.
Co%sequently X = ;3% € = €51€03%X €18 = ey 3 €781 =
= e. -

ik

From A = (:) Aik we conclude A = (:) @ ey and by the
ik

Let x € Ai then e

i,k
. nJ
same reasoning as before A = ¢nxn .

Conversely we now prove the

Theorem 5

Let {lbe a skewfield and let {2 _ , m > 1 be the algebra

of all mxm matrices with entries in.(), then”(lmxm is a

simple algebra.
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Proof:

If e 5 denotes the matrix with 1 at position (i,j) and
zeros elsewhere, the elements { .: 1 <£i,j & m}form
a basis of Q Q _(1 e 5 Now we take

an arbitrary element a & Q dlfferent from zero and

consider the two-sided ideal I = {2 5 {0 vwhich is generated

by this element, Let a = Zocik ey and choose (r,s)

such, that ocrsr,t O . Then
-1
S ( Zaik eik) € %ps T Cpp it By =100, m
(by definition, if 1 is the unit element in () , 1 o = o 1=«
for all ae L) and thus ik o = « eik>' This implies
that I ='mem’ which proves that 19 — is a simple al-

gebra.

Let A be a simple algebra. We have seen that A = @ eikQ

i,k
and « € = €5 % Tor all o€ () . Hence the center C (Q.)

of {1 is contained in the center C(A). We show that C({1) =

C(A). Thus let ¢ € C(A) and write c = e
(4) (4) = 2 e 3psr Speefl.

From c e., = e
ik

Z ek ?pi = z ®i g gkg . (29)
&

b

ix C» we obtain

By multiplying this equation with ey We obtain

eik}ki = 6ik % P %kg , and hence %ik =0 for i # k.

If we use this fact in (29) we find iy %ii = €} gkk

implying gll = eae = gmmz %
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The element ¢ has thus the form ¢ = (e.. + €., + oo + &)
11 22 mm

From (25) it follows that c &(), hence C(4)C C(£)).

For the case where A is a simple algebra over an algebra-

ically closed field, we have C(A) =@ - 1 .,

Consider now a semi-simple algebra A over an algebraically
closed field @. Let A = Al @ ... ) A (30)
be the decomposition of A into simple subalgebras and
l=e+...te , e €A , C=0 ®... ® ¢,

Ci C Ai where C is the center of A. We have seen earlier
that C, = A,/\C, hence C, = 0] e, . This shows that the

number n of simple algebras in (3o0) is equal to the di-

mension of the center C(A). Furthermore, since

Ai g)gn.xn. (31)

1 1
diIIlA = n + e o o + 1’12 (32)

dim C(4) '

Modules for Semi-Simple Algebras

FProm now on all A-modules are assumed to be finite-dimensional.

\,,4\!\’

Theorem 6

An algebra A is semi-simple if and only if every left

A-module is completely reducible.

Proof:

If every left A-module is completely reducible, this is in
particular the case for AA° The first structure theorem
implies that A is semi-simple.

Now let A be semi-simple and M be an A-module. We decompose
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A into a direct sum of minimal left-ideals

2 .
L; = he;, e, = e, # 0. Let {mj:(‘ be a basis of M.

We may write

M = Z hey m, (33)
Ly J

Obviously each Aeimj is a submodule of M, but the sum in

(33) need not be direct. The mapping Aei-—i Aeim, gi-

ven by ae; —> ae;m., a & A, is clearly an A-homomorphism
of Ae; onto Aeimj. Since Aei(z Li) is an irreducible
A-module, the kernel of the homomorphism is either (0)

or Aei. Hence either Aeimj is also irreducible, or else

Aeimj = 0. By (33) we then find M is a sum (not necessarily
direct) of irreducible submodules. This implies that M is
completely reducible by the following reasonings: Assume

that an A-module M is a sum (not necessarily direct) of

irreducible submodules Mi

M= M o+ o+ M (34)
We show that M is completely reducible. Consider Ml/\ M.
B4 = /—m = v —
b&ither Mi”\Mz 0O or Ml .M2 Ml sz In the latter case
drop the term M2 in (34) and consider MlF\MB. In the for-

mer case consider (Ml() Fb)F\M Continuing in this way

3.
we arrive at M =M, ®... & M, .
1 ts

In the proof of theorem 6 some summand in (33) must be dif-

ferent from zero, and that summand is isomorphic to Aei
for some i, If M is assumed to be an irreducible module,

then M = Aei. Hence we have

Theorem 7

If A is semi-simple, every irreducible A-module is iso-

morphic to some minimel left ideal of A.
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This theorem says in other words, that all irre-

ducible representationg of A are contained in the left-

regular representation (module AA)’ Since the number of

non-isomorphic left ideals is equal to the number of

simple components of A, we conclude that the number of

inegquivalent irreducible A-modules is equal to the number

of simple components of A,

If A is a semi-simple algcbra over an algebraically closed

field, the number of inequivalent irredud ble A-modules is

equal to the dimension of the center of the algebra A,

In a simple algebra ¢nxn’ the minimal left ideals con-
sist of all matrices with arbitrary i th column and zeros
elsewhere. To prove this we show that every element x # O

in Lk - (§) g Cix? ¢an = (& Lk generates Lk' Thus

k
choose in x €L, x= 2, e.. a #0 an j such that
k 7 ik 1 .
m "l =
aj # 0. Then o e‘ej %; e %1 T Sy £=1, .., n.
Hence ¢ x = L , llence the dimension of the unique
nxn k

irreducible @ - module is n.
nxn

Now let n. i=1,...,8 be the dimensions of the inequi-

valent irreducible A-modules for a semi-simple algebra A

over an algebraically closed field ¢. Zquations (31), (32)

and the above remarks show that

. 2 2
dim A =n, + ... + Oy
N=dim C (A) (35)

Exercise

An idempotent e2 = e # 0 is called primitive if it cannot
be expressed as a sum of two orthogonal idempotents. Let
A be a semisimple algebra. Show that an idempotent e € A

is primitive if andonly if A e is a minimal left ideal.
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8, Finite Groups

Let G be a finite group and ¢ a field. We construct the

croup algebra ¢ G. The underlying set consists of all
formal sums

Z ocggsocgéQﬁ (36)
ge G

two such expressions being regarded as equal if and only
if they have the same coefficients. We define operations

on the formal sums by the rules

> Gy g + Zﬁgg =Z(ocg+6g)g



and
S S N =N
(Zage) (Toym = > ¢ B en= ) ¥
g,hel reG
where Y, 7 Zz‘@g Bg—l -

g €l
Finally, we define « (;ZJag g) = zgi(a@g)g , G €& 2.

With these definitions, the set of all formal sums forms
an algebra @ G, called the group algebra of G over @.

The unit element of ¢ G is identical with that of G and
is obtained from (36) by setting .a(g) = 0 for all g £ e,
o (¢) =1, e = unit element of G. The formal sums g¥ = l.g,
g € G, which have all but one c oefficient equal to zero,
are linearly independent and form a basis of the algebra
¢ ¢ over ¢. The mapping g —> g* is a monomorphism of

¢ into ¢ G, and we shall ddentify G with its image under
this monomorphism. We can then view G as embedded in @ G
so that the elements of G form a ¢ -basis of @ G.

Now let T be a representation of G with representation
space M, where M is a vector space over the field @. Then
there is a unique way to extend T to a representation T*

of ¢ G with representation space M, namely

™ (S« = :E;a T .

(Zgg) a (g)

Conversely, every representation of ¢ G, upon restriction
to G, yields a representation of G. Moreover it is clear

that a subspace N € M is invariant under G if and only if

it is invariant under ¢ G.

We slways assume that ¢ has characteristic 0. The charac

teristic of a skewfield ¢ is defined as the order of the
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multiplicative unit e in the additive abelian group ¢,

that is the smallest natural number m such that m e = 0.

We now show that @ G is semisimple. This follows from the

above remarks, theorem 6 and the following

Theorem 8

Let p: G —> G L(M) be a representation of a finite group
¢ by linear transformations on a vector space M over @.

Then p is completely reducible.

Proof:
Tet N £ 0 be a G-subspace (subspace invariant under G) of
M. We have to construct a G -subspace L of M such that
M= N (3 L. Because M is a vector space we cal at least
find a subspace N' (not necessary inveriant under G) such
that M =N & N'.
Tet m: M —> N be the mapping given by m —> n, m = 1n + n',
méeM nel, n‘e N'. The projection m has the characterizing
properties

(i) m (m) =m, me N (ii) n (M) &N (37)

In fact, for a given W& Hom¢(M, N) satisfying (i) and (ii)

we have the decomposition

M= (M) @ (1-5)1)
where (1-7)(M) = Stm () s m & M}.

It is easy to see that the subspace & (M) and (1- ) (M)
are G-subspaces of M if

p(g) & = Tplg), g €G. (38)

With the help of © we now construct a projection satis-

fying (38). This is done by an averaging device. Let N be
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the number of elements of G and define
-1 '"”‘Z -1
=N p (&) T p (&). (39)
get
Then for all h € G we have, as a simple calculation shows,

p (h) p(h)—l = T and hence (38) holds. Now we note

p(g)ﬂT’p(g)—l'NIC;p(g)TT M < N. Therefore by (39) T (M) c N,
which shows that 7 € Hom¢ (M,N). It remains to show that
™ (n) =n for n €N. From T p(g)—l n=7p (g)—ln

g € G, n €N and (39) this follows immediately. This proves

the theoremn.

We also prove the

Theorem 9

The dimension of the center of ¢ G is equal to the number

of conjugate classes of G.

Piroof:
Let Kl, ooy Ks denote the conjugate classes of G. TFor
each i, define the element c, & e

C. = Z g, j_:l’ 009 Se

1 g &€ K.
The elements s belong to the center of ¢ G since for all
heG b h g :ZJ h g h = Cy- Moreover, the ele-
g € K
ments {:cl, ceey cs}- are linearly independent over ¢ since

they are sums of non-overlapping sets of group elements.
Finally, let x -:E.a g belong to the center of @ G. Then

foreachheswehavex—§cx =hxh =Y a, ngnt

Comparing coefficients we obtain ag = ah—lg n for all g e G,
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Thus ag is a class function (constant on Ki), and so x is
a linear combination of the Cy. This completes the proof

of theorem 9,
As a corollary we obtain

Theorem 10

Let G be a finite group and @ an algebraically closed
field (with characteristic 0). Then the number of non-
isomorphic irreducible @ G-modules is the same as the num-

ber of conjugate classes of G.

. The Clifford algebra

As an application of our results we discuss now the Clif-

ford algebra which enters physics in many places. The

Clifford algebra @ (n) is the free algebra over the set
Ly oor s X’ﬂgmodulo the relations

1o Yvi=280 -2 . (40)
The following set of 2n elements B/A forms a basis of dl(n)

XA -4 X/u) X/aXv;/“<V) ‘X/‘XV ZO__,/*<V<0")‘--} Yoo X
Theorem 11

The Clifford algebra { (n) is semi-simple.

Proof:

The set of elements {-XA.} -~ ¥, A= Z?Eforms
obviously a group, which generates € (n), Since every re-
presentation of this finite group is completely reducible,
every { (n)-module is completely reducible. By theorem 6

this proves that € (n) is semi-simple.




Theorem 12

The Clifford algebra L (2n), n =1, 2, ... is simple.

Proof:

It is sufficient to show that the center is trivial. We

show a 1little more. Let X &€ ({ (2n) and }(X = X X,
T a

then X = o . 4L,

We write

X:ZaA Y. (41)

Now we prove that for B £ 1 there exists a /puémal, cee rlg
such that

Y Yo o = - ¥e (42)
For instance Xl XZ X1 = - X 9 Xl X1 Y2 o ¥on Xl =
. 2
= - K/l voo X ope Now X)‘K X/v = ( &ﬂ) X = X becausc
X ka = ¥ o X, hence from (41) for a fixed B # 1 and,/k
satisfying (42)

> oy X/uXAX/A =2 0y Y4 = 2, G ¥at oY

L # B

Z T Yo% s

A #£B

Il

This implies oy = O for B # 1 and hence X = a .4AL . As a

corollary we obtain the theorem of Pauli:

Theorem 13

The Clifford algebra @ (2n) has (up to isomorphism) pre-

cisely one irreducible representation, This representation

is faithful and has dimension 2%,
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As an application of this theorem we show that the ca-
nonical anticommutation relations for a finite number

*
of emission and absorption operators a_ _ a., satisfying
i i
E-a., a,*.} =&, . ;4i,j=1, ... , N, have only one ir-
L J 1]

reducible representation. This follows from the fact that
the
3

¥-1 7% 7%

generate the Clifford algebra C (2N).

il

a, + a.¥
1 1

Irreducible Representations of the Symmetric Group.

In this paragraph we illustrate how the general theorems
may be applied to construct the irreducible representations

of the symmetric group.

e begin with some elementary remarks about.s .SSn
is the group of all permutations of the set £ = {;l, oo g nk .

We can consider X as an\gﬁmset.

Definition: Let x,y € X. x is.Snmequivalent toy (N y)

provided that @'x =y for some G'& E5n' N

is indeed on equivalence relation.

Definition: The finmequivalence classes of X are the orbits

of X relative to égf We call an orbit trivial

if it consists of a single element in X.

Let [n] denote the cyclic group generated by an element m & SIl
) -

(this is the set of elements E_l, T, T 5 ees a8t } where

g is the smallest integer such that e = 1). We call © a

cycle if X has only one non-trivial orbit relative to Lr].
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Each cycle m acts transitively on its non-trivial orbit
and we may assume without loss of generality that it
cyclically permutes the elements. Hence it may be written

as

ng*l

T= (¥, TFs aes v )

(meaning that the first object of the list takes the place
of the lost and each of the others replaces its 1 £t

neighbour) .

Two cycles are called disjoint if their nontrivial orbits
are disjoint. It is easy to see that disjoint cycles com-

mute with each other., Using this fact we show

Lemma 2:

Every permutation ¢Q?§L, G"# 4, is expressible as a pro-
duct of disjoint cycles. This expression is unique up to

order of occurrence of the factors.

Proof:

Let Xl,

each 1, 1 ¢ 1 ¢ m a cycle Ty which acts in the same way

. X be the disjoint orbits of [ 07]. Define for

as 07 on X; and as the identity on the rest of X. (We must
agree to set n,o= 1 if Xi consists of a single element,
and still refer to Ty oas a cycle.) We find at once that

¢/ =my ... W, a product of disjoint cycles, We remark
here that T § means "first g ; then m ". To prove the
uniqueness, suppose also that 0“::?3_,.a‘ty is a product
of disjoint cycles, and let X'i be the non-trivial orbit
of Q’i, Then the X'i give the orbits of ¢ hence they are
just a rearrangement of the Xi' Permuting the Q’i we may

assume X'l = Xl’ X'm =X, 9= m. Then for each i,

°*] m
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1¢i¢m, 'T‘i and m, both act as o’ on X;, and each is
the identity on the complement of Xi in X. Hence 'i\'i = Ty
for each 1i.

Now we determine the conjugate classegs of bn It

o= (x, o'x, 0‘2}{, cee og—lx)

is a cycle in Sn’ it is easy to show that, for any m & Sn’

non Tt = (nx, n( ¢ x), =l avzx), cee 5 T O’g—lx))

is also a cycle in Sn of the same length as ¢. Now let
~ e Sn be written as a product of disjoint cycles
= o e G"r where we put in "cycles" of length 1.
Then
n et = (’IIG; n—l) (nO'I’, ‘ﬂi—l)

gives the analogous decomposition of T ’r’n—l. This establishes

Lemma %3

The cycle factorization of = 'TJn—l is gotten from that
of % by letting m act on the digits in the cycle repre-
sentation of 77.

A paritition of n is an ordered set of integers %_mj_’} sa-
tisfying m + My, + ... tm, =0, N

Bach "7 e Sn gives rise to a partition of n as follows:

17/m27/ noo7/mr70.

write 77 as a product of disjoint cycles OJi of lengths m,,
Doy eee Mo,y arranged in order of decreasing length. Then
lemma 3 shows that each conjugate of "’ yields the same

partition of n as T does. Conversely, let 74/' = 0"]'_ 0);[\



..3'7_

yield the same partition of n as G does. Then, for each i,
lT’i and G“'i have the same length, say

. = (x,, x vees X 1 = ! ' '
i ( l’ 29 mi) } (I\‘i (X l,X 29 o o o ,Xmi) .

For each i, define m on the orbit of [ 0"1] by
m(x,) = x'., ..., ©(x ) =x' . Then 1 € S and TE‘!VTE_1=Q/’-
1 1 my ms n’

Consequently, we have the

Proposition 7

There is a one-to-one correspondence between conjugate

classes in 'Sn and partitions of n.

We construct now the irreducible representations of Sn’
Let A be the group algebra of Shover the field (€.

We shall determine a winimal left idecal of A cor-
responding to each partition in such a way that ideals which
correspond to different partitions are not isomorphic (as
A-modules). By Proposition 7 and Theorem 10 we can then
conclude that these ideals form a complete set of non-

isomorphic irreducible A-modules.

Let €g = + 1 if g is an even permutation, and eg = -1
if g is an odd permutation. Let us now start with a par-

tition {nl, oo nk% of n,

n, + cee b1y =1, Ny Y Ny e ?’nk7 0.

With it we associate a table consisting of n, spaces in

the first row, N, spaces in the second row, and so on.

Ex. n = 11, {6,3,1,1}<_~_> L]

|
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A diagram is the array obtained by filling in the spaces
of a table with the digits 1, ... , n. Starting with a

diagram D, let R (D) denote the set of row permutations,

that is, the set of permutations p & S)n which permute
the elements in each row of U, but do not move any digit
from one row to another. hen R (D) is a subgroup of Srﬁ.

Likewise define a column permutation q to be any element

of Esn which permutes the elements of each column of D
without moving any digit from one column to another. Let
C (D) be the group of all column permutations. Obviously
R (D) N C (D) = (a).

The following theorem gives the main result.

Theorem 14

With each partition inl, .,.,.QKS of n we have associated
a, table. Bach table gives rise to a collection of diagrams.
For each diagram D, we obtain the group R(D) of row per-

mutations and the group C(D) of column permutations.

If we set Zgl
e(D) = E;O P q

p € R(D)
q & C(D)

then A . e(D) is a minimal left ideal in the group algebra A
and thus & . e(D) is an irreducible A-module. Further,
ideals coming from different diagrams with the same table
are isomorphic, but ideals from diagrams with different
tables are not. Hence the ideals %;A . e(D)B where D

ranges over a full set of diagrams with distinct tables,

gives a complete set of non-isomorphic irreducible A-modules.
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In the proof of theorem 14 we shall

Propogition 8

In the semi-simple algebra A, let L

need

= Ae be a left ideal

with generating idempotent e, Then L is minimal if and

only if ehAe is a skewfield.

Proof:

eAe is a non-zero subalgebra of A wi

that L = Ae 1s a minimal left ideal

any non-zero left ideal ol ele, Then A L

th unity e. Suppose

of A and let Ll be

1
and so A Ll is a left ideal of A contained in L which im-
plies that ALl = L. But since e is a two-sided unity for
elAe, we have eAe = el = eALl = ele Ll C.Ll. Therefore

Ll = ele, proving that the only left
itself and {03} . Dut an algebra A'

are trivial is a skewfield. This can
Take a € A', a # 0. Suppose that the
b€ A" with b a = 4

ideal, contrary to assumption. This

R
. Then Aa c A i

a €A', a £ 0 has an inverse and the
field.

Conversely, suppose L is not minimal
A-module is completely reducible, we

a direct sum of non-zero left ideals

decomposition e = e, + 83; e, € LZ’
€, € = €5 e3 e = e3 Slnce both €5
the other hand, e =¢e = ee, + ee3
ee, = €, , ee3 = 63, Therefore e,

andeAe contains a pair of nonzero or

and e. and hence cannot be a skewfie

3

This completes the proof of proposit

ideals of ehAe are
whose only left ideals
be seen as follows.
re doesn't exist a
s a nontrivial left
proves that every

refore A' is a skew-

. Then since every

may write L = LZ(DJLB,
of A, This gives a

e3 & L3° We note that
and e lie in L, On
which shows that

= ece, e, e, = ee

2 3 3
thogonal elements e
1d.

ion 8.

€,

2

C Aehe C hAe C L
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Proof of theorem 14:

For any diagram D and any gegsgﬁ define gD to be the
diagram obtained from D by applying g to the digits in D.
Thus if o is in position (i,j) of D, then go is in po-

sition (i,j) of gD.

Lemma 4 ‘

Let D' = gD, and let h & Sn‘ If we regard hD as obtained
from D by moving entries from one position to another,
this same set of moves will change D' into ghg_lD'. In
other words, if the (i,J) entry of D is the (i',j') entry
of hD, then the (i,j) entry of D' is the (i',j') entry of

ghgmlD'.

Proof:

If symbol a at position (i,j) in D occurs at position (i',j')
in hD, the symbol B which is in position (i',j') of D must
satisfy h(B) = a. The element at position (i, j) in D' is

of course g(a); that in position (i',j') of D' is g(B).

The element in (i',j') position in ghg”lD' is therefore

-1
ghg — . g(B) = gla) ,
so that, in going from D' to ghg—lD', the symbol g(a) in
position (i,j) has moved to position (i',j').

Corollary. For g ¢ Eﬁny we have R(gD) = gR(D)g—l, C(gh) =
-1 -1
gC(D)g ~, e(gl) = ge(D)g .
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Proof:

If p & R(D), then p leaves each entry of D in its row.
By the lemma, it then follows that gpg—l leaves each entry
of gD in its row. This argument shows that p &€ R(D) if
and only if gpg-l € R(gD). The same holds for column per-

mutations, and the corollary follows at once.

We use the above ccrollary to show that if D and D' are
diagrams with the same table, then A-e(D) 2 Ase(D'). TFor,
there exists an element g € S]Q such that D' = gD, whence
A«<e(D') = Age(D)g'l = A-e(D)g“l since A+g = A, But then
€ : A-e(D) — A-e(D') defined by &(x) = Xg_l is easily
seen to be an A-isomorphism of the left A-module A-e(D)
onto A-e(D'),

Lemma 5

An element g « 513 is expressible in the form g = pqg,
p € R(D), g & C(D), if and only if no two collinesr sym-

bols of D are co-columnar in gD.

Proof:

Assume g = pq, and let a, B be collinear symbols of D.

Then a, B are also collinear in pl. However, gD = (pqp_l)pD,

-1 . . -
and pgp 8 a column permutation for pl, so that a and B

must lie in different columns of (Pqp_l) pD.

Conversely, suppose no two collinear symbols of D
are co-columner in gD, Then eny two symbols which are co-
columnar in gD cannot be collinear in D, In particular, all

the symbols in the first column of gD lie in different rows

of D, and so there exists a row permutation p, € R(D) which



- 42 -

carries all these symbols into the first column of plD.
Repeat this procedure successively with the remaining
columns of gD, thereby eventually obtaining a row per-
mutation p & R(D) such that for each i, the i th columns

of gD and pD consist of the same symbols (differently

arranged, however). But then gD = q'.pD for some q' € C(pD),

and so q' = pqp-l for some g € C(D). Hence gD = (pqp‘l)
pgD, whence g = pg with p € R(D) and q € ¢(D). This com-

pletes the proof.

We have defined e(D) to be
D) = £ .
e(D) q b q
p € R(D)
q € c(D)

Remark that as p ranges over all elements of R(D) and q
over C(D), the products pq thus obtained are all distinct,
since pjq; = p,d, implies pgl py = ng;lc c(D) N R(D),
and therefore pglpl = q2q;l= (1). This shows that e(D) is
a sum of certain group elements or their negatives, and
so e(D) £ 0 in A. For P, € R(D) and a4y e C(D), we have at

once

p,e(D) = E €, P1PY = e(D) (43)

Zéq pqq; =& e(D) (44)

(D)
elDlq y

We now order the partitions lexicographically, that is,

pD =

9

if we have two partitions n = nl+ ceoT n, = ni + ...t n)
nl 2’ ¢ee 7/ nk7 O 9n:;— }7/ o o o U/n}'l > O 9 we W'I'ite {1’11, * o o
1 1 . . .

n } > {,nl, e nh:g if the first non-zero difference

1 . . .
n.-n. is vnositive.
i i b

’
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Lemma 6

Let D be any diagram associated with the partition {nl..o,nkag,

and D' with.{ni s eees nﬁ'g, and supnose {nl, e nk% >
f_ni; ooy ny 1, Then e(D') - e(D) = 0.

Proof:

We show first that there exist two symbols collinear in D
and co-columnar in D'. Otherwise, the nq entriegs in the
firet row of D must occur in different columns of D'y since
D' has nj colume, this shows that n, { ny, and so ny = nq-
Now apply a column permutation on D' to obtain a new dizgram
D'', also associated with the partition {n’, ceey nﬁg but
which has the same first row as D. We then repeat the argu-
ment with the elements of U and D'' not in the first row,
getting n, = né, «.oy wWhich is impossible.

We have thus shown the existence of symbols «, B col-

linear in D and co-columnar in D'. Set t = («B) € Sn' Then
t € R(D), t € ¢(D'), and
e(D') - e(D) = e(D'")t - te(D) = - e(D') - (D)
by formulas (43) and (44). Therefore e(D')e(D) = 0, and
Lemma 6 is proved.
We note that, for p € R(D), q € ¢(D), ye € , we have
. D) - = ° e(D).
e oye(d) * =g ° yeld
We now prove, conversely, that the above property charac-

terizes the scalar multiples of e(D).
Lemma 7

Let x € A be such that pxq = qu for all p € R(D), q € C(D).
Then there exists Y €& @€ such that x = g’e(D).
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Proof:

Let x = 2: ag 2, the sum extending over all geaSh, where
each ag(—'_ d. .Then

P R | S -1 -1y -
x =& X = a ( ) =¢% Z a
o €q Zg‘ g P & q 4 pha”

for each p € R(D), q € ¢(D). Thus

o, = 8qapgq , peR(D), q €C(D). (45)

Setting g = (1), we obtain « Ly v P e R(D), q «C(D).

pgq =t
To complete the proof of the lemma, we need only show that

o0, = 0 whenever g is not of the form pg for p € &(D), g & C(D).
Suppose that g is not of this form; by Lemma 5, there must then
exist symbols «, B collinear in D and co-columnar in gD. Let

t = (aB)e Sn; then t € R(D), t & C(gD), and so t = gqg_l

for some q € C(D). Then g is also a transposition, and we

a
Therefore ocg = 0, which proves the lemma.

-1
have from (45) ¢ = « -1 = -l.0¢ =<0 i = g,
(45) . teq & . g since tegq g

Now we have for p € R(D) and q € C(D),
N2 -~ 2
p - e(D)” « g =pe(D) - e(D)g = qu(D)
[using (44) and (45)]. By the preceding lemma, we then have
e(D)2 :ge(D) where y is the coefficient of T in e(D)Z,
and hence is an integer. We shall show that ¥ # 0. Let
T & Homq:(A,A) be defined by T(x) = x -~ e(D), x € A, and
let us consider the matrix description of T pbtained by
using the @ -basis of & consisting of the elements 8 =
), 8oy +e+s 8 OF Sn‘ Then if e(D) = o &y Fouee
x, € d@ , we have g - e(D) = A8y + e
° i — %
g, * elD) =% + ajg, + ...

so that the trace of the matrix describing T is alni
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Furthermore al = 1, since (4 ) occurs with coefficient 1
in e(D).

On the other hand, let us calculate the trace using
a different @ -basis of A. We must get the same result,
since the trace is independent of the basis used. Let
{ Vs eee vhjﬁkbe a d -basis of A such that {vl, cees vfs
is a @ -basis of & * e(D). Here, f = dim & - e(D) » 1 since
e(D) is a non-zero element of A * e(D). Further, x ° e(D)=yx
for x € A ° e(D), and so

vy e(D) = Y vy

V2 ° e(D) = X V2
Ve e(D) = B/Vf
Ve - e(D) =% + ...+ * +0

Voo e(D)

I

4+ ...+ ¥ 40,

since y* e(D) & A © e(D) fory= v V- The trace

f+l, ...9 .
is thus ¥ f, so we have Yf =n !, whence X # 0.

We may now show that each ideal A - e(D) is minimal.
Let u = B7le(D), so that u° = u # 0, Then u is idempotent,
and

Au = A - e(D), uAu = e(D)Ae(D).

In order to show that Au is a minimal left ideal of A, it
suffices [ by Proposition8] to prove that uAu is a skewfield.
Let x € vAu; then x = e(D)y e(D) for some y € A, and so

pxq = pe(D) *y- e(D)q = e(D)y e(D) %q = qu for all

p € R(D), q & C(D). By Lemma 7, x must therefore be a scalar
multiple of e(D). Thus uvAuy =Cu ¥ d, which shows in fact
that vAu is a field.
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differents
Finally, let D, D' be diagrams with tables, and
let Au, Au' be the minimal left ideals associated with

them. We shall show that Au and Au' are not isomorphic.

Agsume ¢ : Au —> Au' to0 be an A-isomorphism.
Then ¢ (a u) = a &Jo(u) for every ae A and hence also for
a € Au. But a u = a when a € Au, so we have ¢ (a) = a ¥(u),
a € Au. Setting a' = ¢ (u) € Au', we have Au' = Au - a'.
H:nce u = bu'a' for some b € A, so that u = u2 = bu'a'u.
We shall show that u'a'u = 0, which will give the desired
contradiction. It suffices to prove that u'g u = 0 for
all ge& Sn' However, u'g u = u'g u g—lg, and u' g u g”lz 0]
by Lemma 6 since u' and g u g—l come from D' and gD, res-

pectively.

This completes the proof of Theorem 14.
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CHAPTER II CENTRALIZRS OF MODULES OVl SYMMATRIC ALGEBRAS

l. Trace Form of a Semi-pimple Algebra

Let a be any element of an algebra A over a field @. The
left multiplication of A, La’ which is determined by a is
defined by La: X —yaxXx, Xx €« A ., Clearly La is a linear ope-
rator in A and a-eLa is a representation (left regular re-

presentation) of A. We prove now the

Theorem 1

If A is a semi-simple algebre, then the trace form

X = T"
f (hy y) r (LXLy) (l)
is a non-degenerate bilinear form which is symmetric:
£ (x, y) =1 (y, x) (2)
and associative:
f (xy, z) = T (%, yz) . (3)

Proof:

The form f is obviously bilinear and symmetric. From

L L =1L 1L
Xy "z X Tyz

it follows that f is associative. It remains to be shown

that f is non-degenerate. Let B be a two-sided ideal in A

and consider B.L = {_y : f(x,y) = 0 for all x €3B :} .

For x € B, yeB"L and any a € A, f (x, ay) = f(xa,y) = 0O
since xae€B . Also f(x,ya) = f(ya,x) = f(y,ax) = 0 since

a xX&@B . Hence B + is an ideal. Now assume that A £ 0.
Since A is semi-simple A™ is a direct swmand A = AJ'C] A
where A' is a two-sided ideal. We write 1 =e + e!' , e & Al' y
e' € A'., From e = e # 0 we obtain 0 = f(e,e) = Tr (Lze) =

: L
Tr Le £ 0 [Le is a projection operator on A l. Prom
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1
this contradiction we conclude A = O and hence that f

is non-degenerate. Theorem 1 shows that a semi-simple b

algebra is a symmetric algebra in the sense of the following

Definition 1

A (finite-dimensional) algebra A over a field @ is called

a gymmetric algebra if A admits a non-degenerate bilinear

form f : A x A —> @ which is symmetric and associative.

In this chapter we denote by A a symmetric algebra over a
field @, M a left A-module, and C = Hom, (M; M). We shall
show a reciprocity between certain right ideals of A and
the C-submodules of M. These results hold in particular if
= @ G 1is the group algebrs of a finite group, In the
next chapter we shall apply these results to construct the
irreducible tensor representations of the full linear group
and certain of its subgroups. We follow very closely the

treatment in C. Curtis and I. Reiner, Representation Theory

of Finite Groups and Associative Algebras, page 440.

Let now A be a symmetric algebra with associative
form f. Let §aig and {bj'g be dual bases of A with respect

to f: f(ai, bj) = dqﬁ

Because of the symmetry of f, we have the following two sets

of relations

a, &= Z Ay (a) & <= ab, = Z Ay () b
3

J
and (4)
bi a = ;Zd/ﬁj (a) bj = a; = j?Z/%l (a) a .
J J

As an illustration, we prove the first of these two relations.
Assume that a, E ‘A~ (a) 2, and expand a b, = ;ZJ%I
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Then

A
il
*_b

P
Q
)
o’

N~—
Il
H

—
Ayl

[

W]

(ox
f_J.
~—

Il

—

Y

SN~—r

Now let M be a left A-module, and let M¥ = Hom¢ (M,d) bve
the @-dual of M. By the definition

(Ya) (x) =H(ax), bYeux, xeM, aecs (5)

M* becomes a right A-module. We define a mapping 17
M x M* — A by the rule
. A
Ty = ) b Hlay w) (6)

i
i

i ‘ !

The mapping T is obviously biadditive., Using (4) we further-
more show that ™ is A-bilinear in the sense that

“(ax=vy,) =a T(z,%) +d V(%)

and (7)
T (x. 9 a+to) = T(x, 9) a+ T(x, *) b,

Consider for instance

™ (ax+ by, :.> b

-3 . N \—. )y = >
b. L%(aiax) o ZZ* b, j~(aioy) .
i

The first term after the last equality sign is, using (4)

Db p(ean) = 5 b () A (0) ax)
i i J

= :EL b, lij(a) 7+(ajx) = Z{M a bj ﬂy(ajx) = a Qv(x,tf)-
i X

In the same way one treats the second term, proving the first
equation in (7). Similerly one verifies the second relation
in (7).
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The function & is non-degenerate. Suppose for example

that ™ (x, %) = 0 for all x & M; since the %biﬁ are 1li-
nearly indevendent, we then have (aix) = 0, and since 1
is a linear combination of the {aig , we have Y(M) =0
and Y= 0 . Similarly T (x,?%) =0 for all Yimplies

x = 0. Because of the A-bilinearity of the form %, the
set Al\/{

n
Ay ={L (x5 ) s x; € M, %€ MK, n finite\(8)
i1

is a two-sided ideal in A called the nucleus of M.

From now on we assume that A is semi-simple (one could keep
the discussion more general). In this case the nucleus AM
contains an idempotent € such that a2 € = €a = & for all
a € Ay. Tris follows from the fact that A = Ay ® A' for
some two-sided ideal A'. If we put 4L = £+ €', € €4, ,
£' « A" , then Al‘/i = £€A =A¢ and £ is a central idem-

potent. The element & can be expressed in the form

€ -2 T ud, L en,dl e mwo. (9

1 1

For all %€ lM* we have "V ( €x-x, ) = e T (x, 4)-T(x,}) =0 .

Hence £x = x (is non-degenerate). Similarly %€= % for all
U e M,

Let C = Hom, (M,M) . Our object is to study the properties
of M as a C-module. We first show that the a-module M has

the "double centralizer" property.

Theorem 2

Let Ye Hom, (M,M) . Then there exists an element a &€ Ay
such that a x =¥Yx for all x & M .
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Proof:

For each pair (Y, x) € M* x M we construct the endo-

morphism Y0 x of M by the rule
(Yo x)m=7"(m,4) x,m &N, (10)
We show that Y mx &C . For a @A
(W azx) (an) = Man k) x = a(Q“(m,l}) x) = a((4+g x)m).
The given Y € Hom, (M,M) must commute with all the endo-
morphisms -mx , and we have for all m & M,(l‘-c\X)( Xm) =
¥ ((% @ x) m) or, inserting the definition (10)
T(gm, ) x= ¥ (n,y) x) (11)
for allm, x&€ M and Yel*, Now let a = zijf}gxi,zfi) € AM .

Using (11), we obtain for =11l me&€ M a m::ii‘T%‘Xxg,iki) m =

a

We establish now a connection between right ideals in AM and
C-submodules of M. For each right ideal I CA,  , I M is a

C-submodule of M., If N CM , then

T, ) ={ D Vi, ) ing e v, yy € wl o (12)

, because of the bilinearity of 1.

¥ (gm) = ¥m . This proves the theorem.

is a right ideal of A in Alv

In particular 77 (M, M¥*) = A
of M. The mappings I —> IM and N—> (N, M*) have the fol-

lowing properties

Let now N be a C-submodule

I D (I M, M¥) and N D T(N, M¥) M (13)

the first since (I M, M¥) = I 7 (M, M¥) C I and the
second because for all ne N, 4y e€ll* , x &€ M ,

“n, ) x=(Yyox)n and N is a C-submodule of M,

We are interested in the case when these inclusions can be
replaced by equality. We shall call an A-direct summand of

the A-module M an A-component. First we proof
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Lemma 1:

Let N be a C-component of M. Then there exists an idempotent
e & Ay such that (N, M¥) = e A and (N, M*) M = N.

Proof:

Let © be a projection of M onto N, From 1 & Hom, (M,M) and
the proof of Theorem 2 71 X = EL (n Xg, lfi) xX=eXx , XxX&M
—” o _. o0 N

where e = 2:_’?’(n X q—i) e A(N,M*). If a = 2;’?Tni, 1+i)
is an arbitrary element of G (N,lM*) then

_ I _ ‘ - _
e a= :S; (e n,, 1yi) = a since e ni2_ Tng = n, for all
n, € N . Therefore, ™(N,Mi*) = e A and e~ = e. Now let x € N;
then x = e x & (N,M*) M. In view of (13), this implies

N = O(N,M*) M, and the Lemma is proved.

Lemma 2:

Let I = eA where e2 = e 64AM. Then IM = eM igs a C-component
of M, and "™(IM, M*) = I.

Proof:

We have IM = eAM = eM and M = eM @ (1l-e)M, where eM and
(1-e)M are C-submodules of M, thus proving the first statement.
For the second, let a & I; then

a=ae =) Max], %)) € T(IM, ) .
This result combined with (1%) proves the second statement,

and the Lemma is established. fl

Because A is assumed to be semi-simple, the two-sided
ideal AM is semi-simple and hence is a completely reducible
right AM—moduleb We show now that M is a completely reducible

C-module.




-~ 5% -

Lemma 3:

Let A be a semi-simple algebra and M a left A-module. Let

C = HomA(M,M)° Then M is a completely reducible C-module.

If e is a primitive idempotent in AM then eM is an irreducible
C-submodule of M.

Proof:

We prove first the second statement. Suppose that N is a
non-zero C--submodule of eM. Then from Lemma 2 we obtain

e A = 77(eM,M*) D Y(N,M*) and since eA = ey is a minimal
ideal in AM and T(N,M*) # O we have eA = 77(N,M*) , Then
by (13) aq/(N,M*) M = e MC N , and we have shown that el
is an irreducible C-module. Because AM is a completely re-
ducible right A

-module, we have AM = :E‘el where the

) A
Ui M’
{eAM} are minimal right ideals. It follows that ( € €Ay
is the unit operator in M) M = A M = > e M where the
{_eMjS are irreducible C-modules. This proves that M is a

completely reducible C-module.

Now we come to the main theorem of this chapter.

Theorem 3

Let A be a semi-simple algebra and M a left A-module. Let
C = HomA(M,M). Then I—1IM is a one-to-one mapping of the
set of all right ideals of AM onto the set of all C-sub-
modules of M. Every C-submodule has the form eM where e is

an idempotent in A The C-module eM is irreducible if and

Mo

only ifeis a primitive idempotent in A Two right ideals

M*

Ii = e A, 1 =1, 2, generated by idempotents belonging

to AM’ are A-isomorphic if and only if the C-modules eiM,

i=1, 2, are C~isomorphic.
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Proof:

From the Lemmas (1), (2) and (3), we know that the mappings
I=eA —IM=eM and N——> G°(N,M*) are one-to-one
and inverses of each other. From Lemma 3 we know that eM is
irreducible if and only if e is primitive (the "only if"
part is trivial). It remains to prove the last statement of
the theorem. Let 6 ey
let © (el) = a, (e ) = Db. Then 6 (e c) =8 (e ) ¢ =
1¢ » c€ A and CH (e d) l( 2)d =5b e

d € A, Therefore e2A = a elA, elA = b e2A. Moreover,
bac = ¢ for all ¢ & elA, and abd = d for all d & e2A. To
prove the last statement, consider c = ec < elA and
6lo o (c) = —l(a elJC) (e ac) =5bac . Now

we define mappings 8 al’ld. f between elM and e2M by the rules

9 (e X) = a8 ejX and \f (e2y) =5b- ey - It is clear that

A—e, A be an A-isomorphism, and

o) (el)elc =a e a,

6 and ‘Z are C-homomorphisms. burthermore ‘[0 5 (e X) =

a4

b a e;x = e x and hence \Zo 6 = 1 ; similarly 8 ‘12 = 1.

This proves that elM and e2IfI are C-isomorphic.

Conversely, suppose we have a C-isomorphism Z : elM T e2M .

- v . N~
Define 9 : > (A s i) -—>§_’?’( ZXi,'L(-i) for X, € elM,
Y-, € M¥. Ve know that (e M, M¥) = ek G“(eZM,M*) = e,h
(see the proof of Lemma 3) and TZ— maps ejA onto e,A. We prove
next that 9 is well defined. For this it is sufficient %o

- _ : ; r~ _
show that Z 7 (Xi, l}—i) = 0 implies Z 7 ( ‘Z X, ?-I»i) =
If ZW‘(Xi,I}i 0 for x; € e N, 7—} & M¥*, then
Z(T’(Xi,li—i) M = Z ('LLi a M X5 and sincez is a
C-isomorphism (remember that 2zt = x is in C)
N _ r-
0=y oy oM x =2 T(px, &) H. (14)

Since € = Z ™~ (xz,‘lfg) is a right identity element in A,

we have by (14)

2V E, ) = Y 7 % Y )E =0 by (14)
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and we have proved that ? is well defined. A similar argu-

ment shows that
- -1

for X, & e, M, 4i<5 M* , is a well defined mapping of
™ (e M, M*) onto M (eM, M*) such that 70 6 =1,
&7 =1.

Moreover, it is clear that the mappings.é and :% are right
A-homomorphisms between the right ideals Q‘(ezM, M*) and
i (elM, M*) . It follows that G"(egM, Mx) & f?“(elM,M*) as

right A-modules. This completes the proof of Theorem 3.

L

In applications of our result it may be easy to

find pri~itive idempotents in A but difficult to tell whether

they belong to the ideal AM‘ Because of this problem, the
following result will be useful.

Corollary

Let A and M satisfy the hypothesis of Theorem 3. Let e be
any primitive idempotent in A. Then either eM = O or eM is

an irreducible C-submodule of M.

Proof:

We know that there is an idempotent & é—AM such that
Ea=a% =a for all a,E*AM, and &£m =m for all m € M.
Let B= {b&Ah:bl=0%,

Then, since €= o ’?’(xg,l\.i), b&BNA

- Z&V(mi,qi):o. For all a €4, a € - £a €B M Ay

implies b = b &

and it follows that & is a central idempotent in A. If e is
any primitive idempotent in A, e =¢e & + e (1 - £ ) where
e £ and e (1 -~ £ ) are orthogonal. Since e is a primitive

idempotent, either e £ = e and e & AM so that by Theorem 3,
eM is an irreduc »le C-module, or e (1 - &) = e and eM = O.

This completes the proof of the Corollary.
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In the following Aprendix we add a few remarks

which make the results of Chapter II a bit more explicit.

We consider the situation of Chapter IT, namely a semi-simple
algebra A, a left A-module li and the centralizer C. M can

be considered as an (A,C)-module.

Now let B be a two-sided sirmple ideal in the nucleus AM and
let MB = BM. Clearly MB

MB is also invariant under A. This means that MB is an

(4,C)~submodule. We now show that M, _is an irreducible (A,C)=
D

is invarient under C. Since AB & B,

submodule. Assume that N is an (A4,C)-submodule of MB' Since
we have a decomposition A =B @ B' where D' is a two
sided ideal, we obtain (since B B' = 0) N = AN = BN. Let
B=( e, A be the decomposition of B into minimal right
ideals. Then N = Zi_ei N . Since N is by ascumption # O,
there exists an i with eiN # 0 and hence x &N with e x £ 0.
Now C e,X = eiCx is a C-submodule of eiM, and since eiM is
irreducible, we have N =2 eiM. Then, however, (A eiA is a
two-sided ideal in B, hence equal to B)

N = AN 2 A eiM = A ejAM = BM = MB. This proves our statement.

We can decompose ﬂB into irreducible C-~submodules by

My = (B ey M.

On the other hand we can decompose M, into irreducible A~

B
iy = @ 1

Each Mi is isomorphic to a minimal left-ideal of a. We now

modules

show, that Mi is isomorphic to a minimal left ideal in B.

Otherwise (see Schur's Lemma) for every minimal left ideal L

in B, the homomorphism of L into Mi : L—lx , 2el, x G;Mi,




- 57 -

where x is fixed but erbitrary, would be the zero map. This
would imply BMi = 0. On the other hand Mi = AMi = BMi = 0.

Thig contradiction proves our claim.

For later apslicetions, we make this result more
explicit. To do this we ccnsider the following situation.
Let M be a vector space over an algebraically closed field 7.
Let Zi.be a set of linear transformations of M. we can con-—-
sider M as a §i.~module. We assume that M is a completely
reduci ble 2Z_ -module. Next we consider the centralizer
C = Hom Ei(WbND and study this centralizer. The following
considerations are independent of our previous results. Let

M= (E) Mj be the decomposition of M into irreducible
Ei -modules, This decomposition defines in the usual way
projections m, of 1 onto Mj, The nj are 22 -module homo-

morphisms and’ Ei nj = 1., TFor a Y& C we put

X 1o Xol: 2 le (l5>

) — M o .
where ij =m0 oMy - The Xij are 2 -homomorphism of

Mj onto Mi’ If Y &€ C varies over C the ng vary over all

of Hom.Z;(Mj,Mi) since each sum (15) with arbitrary
KJij < HmnzKW%,Mi) is an element of C. The decomposition

(15) ie unicue: Multiplication of (15) with i from the left
and with n. from the right gives necessarily Xij =M, 0 X ° nj.
For a product of two ¥ and X' the Xij multiply like matrices
! — ( !
X X 2 (2 ¥ ¥ )
h,k j
Now we collect the Mi into isomorphic sets (Hl,.,., Mn )

. e B T
(Mnl+l""’ Mn ), etc. Qbviously Xij =0 if M, is no%

isomorphic to

no

b
=}

5° For isomorphic Mi and Mj, Xij is an iso-
morphism, These remarks show that X has block form



TR Yon, 7
i O
XW‘“‘Xﬂ“
¥ — 7
o a
- -

Now we consider one block (Ml, ooy M ) . We introduce

isomorphic bases in the Mi. L
1 S
_Tl : Upq oo Uy
1\'/12 : U.21 s 0 0 o U.2r (16)
Mn 2 W)q eeee W
1 1 il

The second part of Schur's Lemma implies that in these bases
If we restrict ¥ tol, @ ... @ M, we have
— 1
¥ = ij;j“ke =2 A gy by wF > gy Yo .
ij ij i

This shows that the columns u cee U in (16) transform

in the same way (independent ig g2y, Tg summarize, we have
established that the rows in (16) transform irreducibly and
in the same way under zi_and that the columns transform
irreducibly and in the same way under C (irreducibly since
every transformation which transforms the columns in the same
way helongs to C). We also see that the centralizer C is a

direct sum of full matrix algebras.
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These recsults can be applied to the modules MB introduced

at the beginning of this Appendix. They imply that we can
introduce a basis of the type (16) in MB such that'the rows
transform in the same way under A and the columns transform
in the same way under C (always irreducibly). Note also that
in MB we have collected all isomorphic irreducible A-modules
and all isomorphic irreducible C-modules of M. All this is

in particular true for 4L = ¢ f;f and M = V(z)f.

A further applicetion of the above results is the following
one. Let M be an irreducible module for the direct product
Gl X G2 of the groups Gl and G2 and assume that M is com-
pletely reducible with respect to the group Gl (We identify
Gl X 112 with Gl,
finite or compact. Since (gl, 1) (1, 32) = (1, gz) (gl, 1)

ctc). This is certainly the case if G is

the group G2 operates by elements in the centralizer

Hom, (M,M). For this reason G, leaves a "plock" invariant.

If ws introduce a basis in M as in (16), then the rows trans-
form irreducibly and in the same way under Gl while the co-
lumns transform irrcducibly and in the same way undcr G2
(irreducibly since otherwise M would not be an irreducible

G, x G, -module). This proves that M is isomorphic to NH_@D M,
where Mi is an irreducible Gi—module and with the following
operation of Gl X G2

(gl’ gz) . Xl @ X2 _—, gl Xl ) gz X2 .

One can show convercely that a Gl X Gg-module of this form

is irreducible. (Prove this by showing that
Il i M Vi 0 - -1
Hom (Mléb.xz, My ® NZ) g -1 ).

1% Gy




