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1 Introduction

Cosmology is going through a fruitful and exciting period. Some of the de-
velopments are definitely also of interest to physicists outside the fields of
astrophysics and cosmology.

This chapter covers some particularly fascinating and topical subjects. A
central theme will be the current evidence that the recent (z < 1) Universe is
dominated by an exotic nearly homogeneous dark energy density with negative
pressure. The simplest candidate for this unknown so-called dark energy is a
cosmological term in Einstein’s field equations, a possibility that has been
considered during all the history of relativistic cosmology. Independently of
what this exotic energy density is, one thing is certain since a long time:
The energy density belonging to the cosmological constant is not larger than
the cosmological critical density, and thus incredibly small by particle physics
standards. This is a profound mystery, since we expect that all sorts of vacuum
energies contribute to the effective cosmological constant.

Since this is such an important issue it should be of interest to indicate how
convincing the evidence for this finding really is, or whether one should remain
skeptical. Much of this is based on the observed temperature fluctuations of
the cosmic microwave background radiation (CMB), and large-scale structure
formation. The first evidence for an accelerating expansion of the Universe,
and still the only direct one, came from the Hubble diagram for Type Ia
supernovae. When combined with other measurements a cosmological world
model of the Friedmann–Lemâıtre variety has emerged that is spatially almost
flat, with about 70% of its energy contained in the form dark energy. A detailed
analysis of the existing data requires a considerable amount of theoretical
machinery that is beyond the scope of this contribution. For interested readers
we shall refer to some books, reviews, and articles that may be most convenient
to penetrate deeper into various topics.

N. Straumann: Dark Energy, Lect. Notes Phys. 721, 327–397 (2007)

DOI 10.1007/978-3-540-71117-9 13 c© Springer-Verlag Berlin Heidelberg 2007



328 N. Straumann

Since this book addresses mostly readers whose main interests are outside
astrophysics and cosmology, I do not presuppose a serious training in cos-
mology. However, I do assume some working knowledge of general relativity
(GR). As a source, and for references, I usually quote my recent textbook
[1]. The essentials of the Friedmann–Lemâıtre models will be summarized in
Appendices A and B. Appendix C provides a brief introduction to inflation,
a key idea of modern cosmology.

2 Einstein’s Original Motivation of the Λ-Term

One of the contributions in the famous book Albert Einstein: Philosopher–
Scientist [2] is a chapter by George E. Lemâıtre entitled “The Cosmological
Constant”. In the introduction he says: “The history of science provides many
instances of discoveries which have been made for reasons which are no longer
considered satisfactory. It may be that the discovery of the cosmological con-
stant is such a case.” When the book appeared in 1949 – at the occasion of
Einstein’s seventieth birthday – Lemâıtre could not be fully aware of how right
he was, how profound the cosmological constant problem really is, especially
since he was not a quantum physicist.

We begin this contribution in reviewing the main aspects of the history
of the Λ-term, from its introduction in 1917 up to the point when it became
widely clear that we are facing a deep mystery. (See also [3] and [4].) I describe
first the classical aspect of the historical development.

Einstein introduced the cosmological term when he applied GR the first
time to cosmology [5]. Presumably the main reason why Einstein turned so
soon after the completion of GR to cosmology had much to do with Machian
ideas on the origin of inertia, which played in those years an important role
in Einstein’s thinking. His intention was to eliminate all vestiges of absolute
space. He was, in particular, convinced that isolated masses cannot impose
a structure on space at infinity. Einstein was actually thinking about the
problem regarding the choice of boundary conditions at infinity already in
spring 1916. In a letter to Michele Besso on 14 May 1916 he also mentions
the possibility of the world being finite. A few months later he expanded on
this in letters to Willem de Sitter. It is along these lines that he postulated a
Universe that is spatially finite and closed, a Universe in which no boundary
conditions are needed. He then believed that this was the only way to satisfy
what he later [7] named Mach’s principle, in the sense that the metric field
should be determined uniquely by the energy-momentum tensor.

In addition, Einstein assumed that the Universe was static. This was not
unreasonable at the time, because the relative velocities of the stars as ob-
served were small. (Recall that astronomers only learned later that spiral neb-
ulae are independent star systems outside the Milky Way. This was definitely
established when in 1924 Hubble found that there were Cepheid variables in
Andromeda and also in other galaxies.)
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These two assumptions were, however, not compatible with Einstein’s
original field equations. For this reason, Einstein added the famous Λ-term,
which is compatible with the principles of GR, in particular with the energy–
momentum law ∇νT μν = 0 for matter. The modified field equations in stan-
dard notation and signature (−+ ++) are

Gμν = 8πGTμν − Λgμν . (1)

The cosmological term is, in four dimensions, the only possible complication
of the field equations if no higher than second-order derivatives of the metric
are allowed (Lovelock theorem). This remarkable uniqueness is one of the most
attractive features of GR. (In higher dimensions additional terms satisfying
this requirement are allowed.)

For the static Einstein universe the field equations (1) imply the two
relations

4πGρ =
1
a2

= Λ , (2)

where ρ is the mass density of the dust-filled universe (zero pressure) and a
is the radius of curvature. (We remark, in passing, that the Einstein universe
is the only static dust solution; one does not have to assume isotropy or
homogeneity. Its instability was demonstrated by Lemâıtre in 1927.) Einstein
was very pleased by this direct connection between the mass density and
geometry, because he thought that this was in accord with Mach’s philosophy.

Einstein concludes with the following sentences:

In order to arrive at this consistent view, we admittedly had to intro-
duce an extension of the field equations of gravitation which is not jus-
tified by our actual knowledge of gravitation. It has to be emphasized,
however, that a positive curvature of space is given by our results, even
if the supplementary term is not introduced. That term is necessary
only for the purpose of making possible a quasi-static distribution of
matter, as required by the fact of the small velocities of the stars.

To de Sitter, Einstein emphasized in a letter on 12 March 1917 that his
cosmological model was intended primarily to settle the question “whether
the basic idea of relativity can be followed through its completion, or whether
it leads to contradictions”. And he adds whether the model corresponds to
reality was another matter.

Only later Einstein came to realize that Mach’s philosophy is predicated
on an antiquated ontology that seeks to reduce the metric field to an epiphe-
nomenon of matter. It became increasingly clear to him that the metric field
has an independent existence, and his enthusiasm for what he called Mach’s
principle later decreased. In a letter to F. Pirani he wrote in 1954: “As a
matter of fact, one should no longer speak of Mach’s principle at all” [8]. GR
still preserves some remnant of Newton’s absolute space and time.
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3 From Static to Expanding World Models

Surprisingly to Einstein, de Sitter discovered in the same year, 1917, a com-
pletely different static cosmological model which also incorporated the cosmo-
logical constant, but was anti-Machian, because it contained no matter [9].
For this reason, Einstein tried to discard it on various grounds (more on this
below). The original form of the metric was

g = −
[
1− (

r

R
)2
]
dt2 +

dr2

1− ( rR )2
+ r2(dϑ2 + sin2 ϑdϕ2) .

Here, the spatial part is the standard metric of a three-sphere of radius R,
with R = (3/Λ)1/2. The model had one very interesting property: For light
sources moving along static worldlines there is a gravitational redshift, which
became known as the de Sitter effect. This was thought to have some bearing
on the redshift results obtained by Slipher. Because the fundamental (static)
worldlines in this model are not geodesic, a freely falling object released by
any static observer will be seen by him to accelerate away, generating also
local velocity (Doppler) redshifts corresponding to peculiar velocities. In the
second edition of his book [10], published in 1924, Eddington writes about
this

de Sitter’s theory gives a double explanation for this motion of reces-
sion; first there is a general tendency to scatter (...); second there is
a general displacement of spectral lines to the red in distant objects
owing to the slowing down of atomic vibrations (...), which would er-
roneously be interpreted as a motion of recession.

I do not want to enter into all the confusion over the de Sitter universe. One
source of this was the apparent singularity at r = R = (3/Λ)1/2. This was at
first thoroughly misunderstood even by Einstein and Weyl. (‘The Einstein–de
Sitter–Weyl–Klein Debate’ is now published in Vol. 8 of the Collected Papers
[6].) At the end, Einstein had to acknowledge that de Sitter’s solution is
fully regular and matter-free and thus indeed a counter example to Mach’s
principle. But he still discarded the solution as physically irrelevant because
it is not globally static. This is clearly expressed in a letter from Weyl to
Klein, after he had discussed the issue during a visit of Einstein in Zurich
[11]. An important discussion of the redshift of galaxies in de Sitter’s model
by H. Weyl in 1923 should be mentioned. Weyl introduced an expanding
version1 of the de Sitter model [12]. For small distances his result reduced to
what later became known as the Hubble law. Independently of Weyl, Cornelius
Lanczos introduced in 1922 also a non-stationary interpretation of de Sitter’s
solution in the form of a Friedmann spacetime with a positive spatial curvature

1 I recall that the de Sitter model has many different interpretations, depending on
the class of fundamental observers that is singled out.
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[13]. In a second paper he also derived the redshift for the non-stationary
interpretation [14].

Until about 1930 almost everybody believed that the Universe was static,
in spite of the two fundamental papers by Friedmann [15] in 1922 and 1924
and Lemâıtre’s independent work [16] in 1927. These path-breaking papers
were in fact largely ignored. The history of this early period has – as is of-
ten the case – been distorted by some widely read documents. Einstein too
accepted the idea of an expanding Universe only much later. After the first pa-
per of Friedmann, he published a brief note claiming an error in Friedmann’s
work; when it was pointed out to him that it was his error, Einstein pub-
lished a retraction of his comment, with a sentence that luckily was deleted
before publication: “[Friedmann’s paper] while mathematically correct is of no
physical significance”. In comments to Lemâıtre during the Solvay meeting in
1927, Einstein again rejected the expanding universe solutions as physically
unacceptable. According to Lemâıtre, Einstein was telling him, “Vos calculs
sont corrects, mais votre physique est abominable.” It appears astonishing that
Einstein – after having studied carefully Friedmann’s papers – did not real-
ize that his static model is unstable, and hence that the Universe has to be
expanding or contracting. On the other hand, I found in the archive of the
ETH many years ago a postcard of Einstein to Weyl from 1923, related to
Weyl’s reinterpretation of de Sitter’s solution, with the following interesting
sentence: “If there is no quasi-static world, then away with the cosmological
term.”

It also is not well known that Hubble interpreted his famous results on
the redshift of the radiation emitted by distant “nebulae” in the framework
of the de Sitter model, as was suggested by Eddington.

The general attitude is well illustrated by the following remark of Edding-
ton at a Royal Astronomical Society meeting in January 1930: “One puzzling
question is why there should be only two solutions. I suppose the trouble is
that people look for static solutions.”

Lemâıtre, who had been for a short time a post-doctoral student of Edding-
ton, read this remark in a report to the meeting published in Observatory,
and wrote to Eddington pointing out his 1927 paper. Eddington had seen
that paper, but had completely forgotten about it. But now he was greatly
impressed and recommended Lemâıtre’s work in a letter to Nature. He also
arranged for a translation which appeared in MNRAS [17]. Eddington also
“pointed out that it was immediately deducible from his [Lemâıtre’s] formu-
lae that Einstein’s world is unstable, so that an expanding or a contracting
universe is an inevitable result of Einstein’s law of gravitation.”

Lemâıtre’s successful explanation of Hubble’s discovery finally changed
the viewpoint of the majority of workers in the field. At this point, Einstein
rejected the cosmological term as superfluous and no longer justified [18]. At
the end of the paper, in which he published his new view, Einstein adds some
remarks about the age problem which was quite severe without the Λ-term,
since Hubble’s value of the Hubble parameter was then about seven times too
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large. Einstein is, however, not very worried and suggests two ways out. First
he says that the matter distribution is in reality inhomogeneous and that the
approximate treatment may be illusionary. Then he adds that in astronomy
one should be cautious with large extrapolations in time.

Einstein repeated his new standpoint also much later [19], and this was
adopted by many other influential workers, e.g. by Pauli [20]. Whether
Einstein really considered the introduction of the Λ-term as “the biggest blun-
der of his life” appears doubtful to me. In his published work and letters I
never found such a strong statement. Einstein discarded the cosmological term
just for simplicity reasons. For a minority of cosmologists (O. Heckmann, for
example [21]), this was not sufficient reason. Paraphrasing Rabi, one might
ask, “who ordered it away”?

Einstein published his new view in the Sitzungsberichte der Preussischen
Akademie der Wissenschaften. The correct citation is,

Einstein. A. (1931). Sitzungsber. Preuss. Akad. Wiss. 235–37.

Many authors have quoted this paper but never read it. As a result, the
quotations gradually changed in an interesting, quite systematic fashion. Some
steps are shown in the following sequence:

– A. Einstein. 1931. Sitzsber. Preuss. Akad. Wiss. ...
– A. Einstein. Sitzber. Preuss. Akad. Wiss. ... (1931)
– A. Einstein (1931). Sber. preuss. Akad. Wiss. ...
– Einstein. A .. 1931. Sb. Preuss. Akad. Wiss. ...
– A. Einstein. S.-B. Preuss. Akad. Wis. ...1931
– A. Einstein. S.B. Preuss. Akad. Wiss. (1931) ...
– Einstein, A., and Preuss, S.B. (1931). Akad. Wiss. 235

Presumably, one day some historian of science will try to find out what
happened with the young physicist S.B. Preuss, who apparently wrote just
one important paper and then disappeared from the scene.

After the Λ-force was rejected by its inventor, other cosmologists, like
Eddington, retained it. One major reason was that it solved the problem
of the age of the Universe when the Hubble time scale was thought to be
only 2 billion years (corresponding to the value H0 ∼ 500 km s−1Mpc−1 of
the Hubble constant). This was even shorter than the age of the Earth. In
addition, Eddington and others overestimated the age of stars and stellar
systems.

For this reason, the Λ-term was employed again and a model was revived
which Lemâıtre had singled out from the many solutions of the Friedmann–
Lemâıtre equations.2 This so-called “Lemâıtre hesitation universe” is closed
and has a repulsive Λ-force (Λ > 0), which is slightly greater than the value

2 I recall that Friedmann included the Λ-term in his basic equations. I find it
remarkable that for the negatively curved solutions he pointed out that these
may be open or compact (but not simply connected).
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chosen by Einstein. It begins with a big bang and has the following two stages
of expansion. In the first the Λ-force is not important, the expansion is deceler-
ated due to gravity and slowly approaches the radius of the Einstein universe.
At about the same time, the repulsion becomes stronger than gravity and
a second stage of expansion begins which eventually inflates. In this way a
positive Λ was employed to reconcile the expansion of the Universe with the
age of stars.

Repulsive Effect of a Positive Cosmological Constant

The repulsive effect of a positive cosmological constant can be seen from the
following consequence of Einstein’s field equations for the time-dependent
scale factor a(t) (see Appendix A):

ä = −4πG
3

(ρ + 3p)a +
Λ

3
a , (3)

where p is the pressure of all forms of matter.
Historically, the Newtonian analog of the cosmological term was regarded

by Einstein, Weyl, Pauli, and others as a Yukawa term. This is not correct,
as I now show.

For a better understanding of the action of the Λ-term it may be helpful to
consider a general static spacetime with the metric (in adapted coordinates)

ds2 = −ϕ2dt2 + gikdx
idxk , (4)

where ϕ and gik depend only on the spatial coordinates xi. The component R00

of the Ricci tensor is given by R00 = Δ̄ϕ/ϕ, where Δ̄ is the three-dimensional
Laplace operator for the spatial metric gik in (4) (see, e.g., [1]). Let us write
(1) in the form

Gμν = κ(Tμν + TΛμν) (κ = 8πG) , (5)

with
TΛμν = − Λ

8πG
gμν . (6)

This has the form of the energy–momentum tensor of an ideal fluid, with
energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ.3 For an ideal fluid at
rest Einstein’s field equation implies

1
ϕ
Δ̄ϕ = 4πG

[
(ρ + 3p) + (ρΛ + 3pΛ)

︸ ︷︷ ︸
−2ρΛ

]
. (7)

Since the energy density and the pressure appear in the combination ρ + 3p,
we understand that a positive ρΛ leads to a repulsion (as in (3)). In the
3 This way of looking at the cosmological term was soon (in 1918) emphasized by

Schrödinger and also by F. Klein.
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Newtonian limit we have ϕ � 1 + φ (φ : Newtonian potential) and p � ρ,
hence we obtain the modified Poisson equation

Δφ = 4πG(ρ− 2ρΛ) . (8)

This is the correct Newtonian limit.
As a result of revised values of the Hubble parameter and the development

of the modern theory of stellar evolution in the 1950s, the controversy over
ages was resolved and the Λ-term became again unnecessary. (Some tension
remained for values of the Hubble parameter at the higher end of published
values.)

However, in 1967 it was revived again in order to explain why quasars ap-
peared to have redshifts that concentrated near the value z = 2. The idea was
that quasars were born in the hesitation era [22]. Then quasars at greatly dif-
ferent distances can have almost the same redshift, because the universe was
almost static during that period. Other arguments in favor of this interpreta-
tion were based on the following peculiarity. When the redshifts of emission
lines in quasar spectra exceed 1.95, then redshifts of absorption lines in the
same spectra were, as a rule, equal to 1.95. This was then quite understand-
able, because quasar light would most likely have crossed intervening galaxies
during the epoch of suspended expansion, which would result in almost iden-
tical redshifts of the absorption lines. However, with more observational data
evidence for the Λ-term dispersed for the third time.

4 The Mystery of the Λ-Problem

At this point I want to leave the classical discussion of the Λ-term, and turn
to the quantum aspect of the Λ-problem, where it really becomes very serious.

4.1 Historical Remarks

Since quantum physicists had so many other problems, it is not astonishing
that in the early years they did not worry about this subject. An exception
was Pauli, who wondered in the early 1920s whether the zero-point energy of
the radiation field could be gravitationally effective.

As background I recall that Planck had introduced the zero-point energy
with somewhat strange arguments in 1911. The physical role of the zero-point
energy was much discussed in the early years of quantum theory. There was,
for instance, a paper by Einstein and Stern in 1913 [Collected Papers, Vol. 4,
Doc. 11; see also the Editorial Note, p. 270] that aroused widespread interest.
In this, two arguments in favor of the zero-point energy were given. The first
had to do with the specific heat of rotating (diatomic) molecules. The authors
developed an approximate theory of the energy of rotating molecules and
came to the conclusion that the resulting specific heat agreed much better
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with recent experimental results by Arnold Eucken, if they included the zero-
point energy. The second argument was based on a new derivation of Planck’s
radiation formula. In both the arguments, Einstein and Stern made a number
of problematic assumptions, and in fall 1913, Einstein retracted their results.
At the second Solvay Congress in late October 1913, Einstein said that he no
longer believed in the zero-point energy, and in a letter to Ehrenfest [Vol. 5,
Doc. 481] he wrote that the zero-point energy was “dead as a doornail”.

From Charly Enz and Armin Thellung – Pauli’s last two assistants – I
have learned that Pauli had discussed this issue extensively with O. Stern
in Hamburg. Stern had calculated, but never published, the vapor pressure
difference between the isotopes 20 and 22 of Neon (using Debye theory). He
came to the conclusion that without zero-point energy this difference would
be large enough for easy separation of the isotopes, which is not the case
in reality. These considerations penetrated into Pauli’s lectures on statistical
mechanics [23] (which I attended). The theme was taken up in an article
by Enz and Thellung [24]. This was originally written as a birthday gift for
Pauli, but because of Pauli’s early death this appeared in a memorial volume
of Helv.Phys.Acta.

From Pauli’s discussions with Enz and Thellung we know that Pauli esti-
mated the influence of the zero-point energy of the radiation field – cutoff at
the classical electron radius – on the radius of the universe, and came to the
conclusion that it “could not even reach to the moon”.

When, as a student, I heard about this, I checked Pauli’s unpublished4

remark by doing the following little calculation (which Pauli must have done):
In units with � = c = 1 the vacuum energy density of the radiation field is

〈ρ〉vac =
8π

(2π)3

∫ ωmax

0

ω

2
ω2dω =

1
8π2

ω4
max ,

with
ωmax =

2π
λmax

=
2πme

α
.

The corresponding radius of the Einstein universe in (2) would then be (Mpl ≡
1/
√
G)

a =
α2

(2π)
2
3

Mpl

me

1
me

∼ 31 km .

This is indeed less than the distance to the moon. (It would be more consistent
to use the curvature radius of the static de Sitter solution; the result is the
same, up to the factor

√
3/2.)

For decades nobody else seems to have worried about contributions
of quantum fluctuations to the cosmological constant, although physicists

4 A trace of this is in Pauli’s Handbuch article [25] on wave mechanics in the section
where he discusses the meaning of the zero-point energy of the quantized radiation
field.



336 N. Straumann

learned after Dirac’s hole theory that the vacuum state in quantum field theory
is not an empty medium, but has interesting physical properties. As an impor-
tant example I mention the papers by Heisenberg and Euler [26] in which they
calculated the modifications of Maxwell’s equations due to the polarization of
the vacuum. Shortly afterward, Weisskopf [27] not only simplified their calcu-
lations but also gave a thorough discussion of the physics involved in charge
renormalization. Weisskopf related the modification of Maxwell’s Lagrangian
to the change of the energy of the Dirac sea as a function of slowly varying
external electromagnetic fields. (Avoiding the old-fashioned Dirac sea, this ef-
fective Lagrangian is due to the interaction of a classical electromagnetic field
with the vacuum fluctuations of the electron positron field.) After a charge
renormalization this change is finite and gives rise to electric and magnetic po-
larization vectors of the vacuum. In particular, the refraction index for light
propagating perpendicular to a static homogeneous magnetic field depends
on the polarization direction. This is the vacuum analog of the well-known
Cotton–Mouton effect in optics. As a result, an initially linearly polarized light
beam becomes elliptic. (In spite of great efforts it has not yet been possible
to observe this effect.)

Another beautiful example for the importance of vacuum energies as a
function of varying external conditions is the Casimir effect. This is the most
widely cited example of how vacuum fluctuations can have observable conse-
quences.

The presence of conducting plates modifies the vacuum energy density in
a manner which depends on the separation of the plates. This leads to an
attractive force between the two plates.

Historically, this was a byproduct of some applied industrial research in
the stability of colloidal suspensions used to deposit films in the manufacture
of lamps and cathode tubes. This lead Casimir and Polder to reconsider the
theory of van der Waals interaction with retardation included. They found
that this causes the interaction to vary at large intermolecular separations
as r−7. Casimir mentioned his result to Niels Bohr during a walk, and told
him that he was puzzled by the extreme simplicity of the result at large
distance. According to Casimir, Bohr mumbled something about zero-point
energy. That was all, but it put him on the right track.

Precision experiments have recently confirmed the theoretical prediction
to about 1%. By now the literature related to the Casimir effect is enormous.
For further information we refer to the recent book [28].

4.2 Has Dark Energy been Discovered in the Lab?

It has been suggested by Beck and Mackey [29] that part of the zero-point en-
ergy of the radiation field that is gravitationally active can be determined from
noise measurements of Josephson junctions. This caused some widespread at-
tention. In a reaction we [30] showed that there is no basis for this claim,
by following the reasoning in [29] for a much simpler model, for which it is
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very obvious that the authors misinterpreted their formulae. Quite generally,
the absolute value of the zero-point energy of a quantum mechanical system
has no physical meaning when gravitational coupling is ignored. All that is
measurable are changes of the zero-point energy under variations of system
parameters or of external couplings, like an applied voltage. For further infor-
mation on the controversy, see [31] and [32].

4.3 Vacuum Energy and Gravity

When we consider the coupling to gravity, the vacuum energy density acts
like a cosmological constant. In order to see this, first consider the vacuum
expectation value of the energy–momentum tensor in Minkowski spacetime.
Since the vacuum state is Lorentz invariant, this expectation value is an invari-
ant symmetric tensor, hence proportional to the metric tensor. For a curved
metric this is still the case, up to higher curvature terms:

〈Tμν〉vac = −gμνρvac + higher curvature terms . (9)

The effective cosmological constant, which controls the large-scale behavior of
the Universe, is given by

Λ = 8πGρvac + Λ0 , (10)

where Λ0 is a bare cosmological constant in Einstein’s field equations.
We know from astronomical observations that ρΛ ≡ Λ/8πG cannot be

larger than about the critical density:

ρcrit =
3H2

0

8πG
= 1.88× 10−29h2

0gcm
−3 (11)

� (3× 10−3eV )4 ,

where h0 is the reduced Hubble parameter

h0 = H0/(100kms−1Mpc−1) (12)

that is close to 0.7.
It is a complete mystery as to why the two terms in (10) should almost

exactly cancel. This is – more precisely stated – the famous Λ-problem.
As far as I know, the first who came back to possible contributions of the

vacuum energy density to the cosmological constant was Zel’dovich. He dis-
cussed this issue in two papers [33] during the third renaissance period of the
Λ-term, but before the advent of spontaneously broken gauge theories. The
following remark by him is particularly interesting. Even if one assumes com-
pletely ad hoc that the zero-point contributions to the vacuum energy density
are exactly cancelled by a bare term, there still remain higher-order effects.
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In particular, gravitational interactions between the particles in the vacuum
fluctuations are expected on dimensional grounds to lead to a gravitational
self-energy density of order Gμ6, where μ is some cutoff scale. Even for μ as
low as 1 GeV (for no good reason) this is about 9 orders of magnitude larger
than the observational bound.

This illustrates that there is something profound that we do not under-
stand at all, certainly not in quantum field theory (so far also not in string the-
ory). We are unable to calculate the vacuum energy density in quantum field
theories, like the standard model of particle physics. But we can attempt to
make what appear to be reasonable order-of-magnitude estimates for the var-
ious contributions. All expectations are in gigantic conflict with the facts (see
below). Trying to arrange the cosmological constant to be zero is unnatural in
a technical sense. It is like enforcing a particle to be massless, by fine-tuning
the parameters of the theory when there is no symmetry principle which im-
plies a vanishing mass. The vacuum energy density is unprotected from large
quantum corrections. This problem is particularly severe in field theories with
spontaneous symmetry breaking. In such models there are usually several pos-
sible vacuum states with different energy densities. Furthermore, the energy
density is determined by what is called the effective potential, and this is a
dynamical object. Nobody can see any reason why the vacuum of the standard
model we ended up as the Universe cooled has – for particle physics standards
– an almost vanishing energy density. Most probably, we will only have a sat-
isfactory answer once we shall have a theory which successfully combines the
concepts and laws of GR about gravity and spacetime structure with those of
quantum theory.

4.4 Simple Estimates of Vacuum Energy Contributions

If we take into account the contributions to the vacuum energy from vacuum
fluctuations in the fields of the standard model up to the currently explored
energy, i.e., about the electroweak scale MF = G

−1/2
F ≈ 300GeV (GF : Fermi

coupling constant), we cannot expect an almost complete cancellation, be-
cause there is no symmetry principle in this energy range that could require
this. The only symmetry principle which would imply this is supersymmetry,
but supersymmetry is broken (if it is realized in nature). Hence we can at
best expect a very imperfect cancellation below the electroweak scale, leaving
a contribution of the order of M4

F . (The contributions at higher energies may
largely cancel if supersymmetry holds in the real world.)

We would reasonably expect that the vacuum energy density is at least
as large as the condensation energy density of the QCD phase transition
to the broken phase of chiral symmetry. Already this is far too large:
∼ Λ4

QCD/16π2 ∼ 10−4GeV4; this is more than 40 orders of magnitude larger
than ρcrit. Beside the formation of quark condensates < q̄q > in the QCD vac-
uum which break chirality, one also expects a gluon condensate < Gμν

a Gaμν >
∼ Λ4

QCD. This produces a significant vacuum energy density as a result
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of a dilatation anomaly: If Θμ
μ denotes the “classical” trace of the energy–

momentum tensor, we have [34]

T μμ = Θμ
μ −

β(gs)
2gs

Gμν
a Gaμν , (13)

where the second term is the QCD piece of the trace anomaly. β(gs) is the β-
function of QCD that determines the running of the strong coupling constant
gs (see the contribution of Dosch to this book). I recall that this anomaly arises
because a scale transformation is no more a symmetry if quantum corrections
are included. Taking the vacuum expectation value of (13), we would again
naively expect that < Θμ

μ > is of the order M4
F . Even if this should vanish

for some unknown reason, the anomalous piece is cosmologically gigantic. The
expectation value < Gμν

a Gaμν > can be estimated with QCD sum rules [35],
and gives

< T μμ >anom∼ −(350MeV )4 , (14)

about 45 orders of magnitude larger than ρcrit. This reasoning should show
convincingly that the cosmological constant problem is indeed a profound one.
(Note that there is some analogy with the (much milder) strong CP problem
of QCD. However, in contrast to the Λ-problem, Peccei and Quinn [36] have
shown that in this case there is a way to resolve the conundrum.)

Let us also have a look at the Higgs condensate of the electroweak theory.
Recall that in the standard model we have for the Higgs doublet Φ in the
broken phase for < Φ∗Φ >≡ 1

2φ
2 the potential

V (φ) = −1
2
m2φ2 +

λ

8
φ4 . (15)

Setting as usual φ = v+H , where v is the value of φ where V has its minimum,

v =

√
2m2

λ
= 2−1/4G

−1/2
F ∼ 246GeV , (16)

we find that the Higgs mass is related to λ by λ = M2
H/v2. For φ = v we

obtain the energy density of the Higgs condensate

V (φ = v) = −m4

2λ
= − 1

8
√

2
M2
FM

2
H = O(M4

F ) . (17)

We can, of course, add a constant V0 to the potential (15) such that it cancels
the Higgs vacuum energy in the broken phase – including higher-order correc-
tions. This again requires an extreme fine tuning. A remainder of only O(m4

e),
say, would be catastrophic. This remark is also highly relevant for models of
inflation and quintessence.
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In attempts beyond the standard model the vacuum energy problem so
far remains, and often becomes even worse. For instance, in supergravity the-
ories with spontaneously broken supersymmetry there is the following simple
relation between the gravitino mass mg and the vacuum energy density

ρvac =
3

8πG
m2
g .

Comparing this with (11) we find

ρvac
ρcrit

� 10122
( mg

mPl

)2

.

Even for mg ∼ 1 eV this ratio becomes 1066. (mg is related to the pa-
rameter F characterizing the strength of the supersymmetry breaking by
mg = (4πG/3)1/2F , so mg ∼ 1 eV corresponds to F 1/2 ∼ 100 TeV .)

Also string theory has not yet offered convincing clues why the cosmo-
logical constant is so extremely small. The main reason is that a low energy
mechanism is required, and since supersymmetry is broken, one again expects
a magnitude of order M4

F , which is at least 50 orders of magnitude too large
(see also [37]). However, non-supersymmetric physics in string theory is at
the very beginning and workers in the field hope that further progress might
eventually lead to an understanding of the cosmological constant problem.

I hope I have convinced the reader that we are indeed facing a profound
mystery. (For other recent reviews, see also [38–41]. These contain more ex-
tended lists of references.)

5 Luminosity–Redshift Relation for Type Ia Supernovae

A few years ago the Hubble diagram for Type Ia supernovae gave, as a big
surprise, the first serious evidence for a currently accelerating Universe. Before
presenting and discussing critically these exciting results, we develop on the
basis of Appendix A some theoretical background.

5.1 Theoretical Redshift–Luminosity Relation

In cosmology several different distance measures are in use, which are all
related by simple redshift factors (see Sect. A.4). The one which is relevant in
this section is the luminosity distance DL. We recall that this is defined by

DL = (L/4πF)1/2 , (18)

where L is the intrinsic luminosity of the source and F the observed en-
ergy flux.
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We want to express this in terms of the redshift z of the source and some
of the cosmological parameters. If the comoving radial coordinate r is chosen
such that the Friedmann–Lemâıtre metric takes the form

g = −dt2 + a2(t)
[

dr2

1− kr2
+ r2dΩ2

]

, k = 0,±1 , (19)

then we have
Fdt0 = Ldte · 1

1 + z
· 1
4π(rea(t0))2

.

The second factor on the right is due to the redshift of the photon energy;
the indices 0, e refer to the present and emission times, respectively. Using
also 1 + z = a(t0)/a(te), we find in a first step:

DL(z) = a0(1 + z)r(z) (a0 ≡ a(t0)) . (20)

We need the function r(z). From

dz = −a0

a

ȧ

a
dt , dt = −a(t)

dr√
1− kr2

for light rays, we see that

dr√
1− kr2

=
1
a0

dz

H(z)
(H(z) =

ȧ

a
) . (21)

Now, we make use of the Friedmann equation

H2 +
k

a2
=

8πG
3

ρ . (22)

Let us decompose the total energy–mass density ρ into non-relativistic (NR),
relativistic (R), Λ, quintessence (Q), and possibly other contributions

ρ = ρNR + ρR + ρΛ + ρQ + · · · . (23)

For the relevant cosmic period we can assume that the “energy equation”

d

da
(ρa3) = −3pa2 (24)

also holds for the individual components X = NR,R,Λ,Q, · · · . If wX ≡
pX/ρX is constant, this implies that

ρXa3(1+wX ) = const . (25)

Therefore,

ρ =
∑

X

(
ρXa3(1+wX )

)

0

1
a3(1+wX )

=
∑

X

(ρX)0(1 + z)3(1+wX) . (26)
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Hence the Friedmann equation (22) can be written as

H2(z)
H2

0

+
k

H2
0a

2
0

(1 + z)2 =
∑

X

ΩX(1 + z)3(1+wX) , (27)

where ΩX is the dimensionless density parameter for the species X ,

ΩX =
(ρX)0
ρcrit

, (28)

where ρcrit is the critical density:

ρcrit =
3H2

0

8πG
= 1.88× 10−29 h2

0 g cm−3 (29)
= 8× 10−47h2

0 GeV 4 .

Here h0 denotes the reduced Hubble parameter

h0 = H0/(100 km s−1 Mpc−1) � 0.7 . (30)

Using also the curvature parameter ΩK ≡ −k/H2
0a

2
0, we obtain the useful

form
H2(z) = H2

0E
2(z;ΩK , ΩX) , (31)

with
E2(z;ΩK , ΩX) = ΩK(1 + z)2 +

∑

X

ΩX(1 + z)3(1+wX) . (32)

Especially for z = 0 this gives

ΩK + Ω0 = 1, Ω0 ≡
∑

X

ΩX . (33)

If we use (31) in (21), we get

∫ r(z)

0

dr√
1− kr2

=
1

H0a0

∫ z

0

dz′

E(z′)
(34)

and thus
r(z) = S(χ(z)) , (35)

where

χ(z) =
1

H0a0

∫ z

0

dz′

E(z′)
(36)

and

S(χ) =

⎧
⎨

⎩

sinχ : k = 1
χ : k = 0

sinhχ : k = 1 .
(37)
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Inserting this in (20) gives finally the relation we were looking for

DL(z) =
1
H0
DL(z;ΩK , ΩX) , (38)

with

DL(z;ΩK , ΩX) = (1 + z)
1

|ΩK |1/2S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)

(39)

for k = ±1. For a flat universe, ΩK = 0 or equivalently Ω0 = 1, the “Hubble-
constant-free” luminosity distance is

DL(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (40)

Astronomers use as logarithmic measures of L and F the absolute and
apparent magnitudes,5 denoted by M and m, respectively. The conventions
are chosen such that the distance modulus m−M is related to DL as follows

m−M = 5 log
(

DL

1 Mpc

)

+ 25 . (41)

Inserting the representation (38), we obtain the following relation between the
apparent magnitude m and the redshift z:

m = M+ 5 logDL(z;ΩK , ΩX) , (42)

where, for our purpose, M = M − 5 logH0 + 25 is an uninteresting fit pa-
rameter. The comparison of this theoretical magnitude redshift relation with
data will lead to interesting restrictions for the cosmological Ω-parameters.
In practice often only ΩM and ΩΛ are kept as independent parameters, where
from now on the subscript M denotes (as in most papers) non-relativistic
matter.

The following remark about degeneracy curves in the Ω-plane is important
in this context. For a fixed z in the presently explored interval, the contours
defined by the equations DL(z;ΩM , ΩΛ) = const have little curvature, and
thus we can associate an approximate slope to them. For z = 0.4 the slope is
about 1 and increases to 1.5-2 by z = 0.8 over the interesting range of ΩM and
ΩΛ. Hence even quite accurate data can at best select a strip in the Ω-plane,
with a slope in the range just discussed. This is the reason behind the shape
of the likelihood regions shown later (Fig. 2).

In this context it is also interesting to determine the dependence of the
deceleration parameter

q0 = −
(aä

ȧ2

)

0
(43)

5 Beside the (bolometric) magnitudes m,M , astronomers also use magnitudes
mB, mV , . . . referring to certain wavelength bands B (blue), V (visual), and
so on.
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on ΩM and ΩΛ. At an any cosmic time we obtain from (107) and (26)

− äa

ȧ2
=

1
2

1
E2(z)

∑

X

ΩX(1 + z)3(1+wX)(1 + 3wX) . (44)

For z = 0 this gives

q0 =
1
2

∑

X

ΩX(1 + 3wX) =
1
2
(ΩM − 2ΩΛ + · · · ) . (45)

The line q0 = 0 (ΩΛ = ΩM/2) separates decelerating from accelerating uni-
verses at the present time. For given values of ΩM , ΩΛ, etc., (44) vanishes for
z determined by

ΩM (1 + z)3 − 2ΩΛ + · · · = 0 . (46)

This equation gives the redshift at which the deceleration period ends (coast-
ing redshift).

Generalization for Dynamical Models of Dark Energy

If the vacuum energy constitutes the missing two-thirds of the average energy
density of the present Universe, we would be confronted with the following
cosmic coincidence problem: Since the vacuum energy density is constant in
time – at least after the QCD phase transition – while the matter energy
density decreases as the Universe expands, it would be more than surprising
if the two are comparable just at about the present time, while their ratio was
tiny in the early Universe and would become very large in the distant future.
The goal of dynamical models of dark energy is to avoid such an extreme fine-
tuning. The ratio p/ρ of this component then becomes a function of redshift,
which we denote by wQ(z) (because the so-called “quintessence models” are
particular examples). Then the function E(z) in (32) gets modified.

To see how, we start from the energy equation (24) and write this as

d ln(ρQa3)
d ln(1 + z)

= 3wQ .

This gives

ρQ(z) = ρQ0(1 + z)3 exp

(∫ ln(1+z)

0

3wQ(z′)d ln(1 + z′)

)

or

ρQ(z) = ρQ0 exp

(

3
∫ ln(1+z)

0

(1 + wQ(z′))d ln(1 + z′)

)

. (47)
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Hence, we have to perform on the right of (32) the following substitution:

ΩQ(1 + z)3(1+wQ) → ΩQ exp

(

3
∫ ln(1+z)

0

(1 + wQ(z′))d ln(1 + z′)

)

. (48)

As indicated above, a much discussed class of dynamical models for dark
energy are quintessence models. In many ways people thereby repeat what
has been done in inflationary cosmology. The main motivation there was (see
Appendix C) to avoid excessive fine tunings of standard big bang cosmology
(horizon and flatness problems). In Appendix D we give a brief discussion
of this class of models. It has to be emphasized, however, that quintessence
models do not solve the vacuum energy problem, so far also not the coincidence
puzzle.

5.2 Type Ia Supernovas as Standard Candles

It has long been recognized that supernovas of type Ia are excellent standard
candles and are visible to cosmic distances [42] (the record is at present at
a redshift of about 1.7). At relatively closed distances they can be used to
measure the Hubble constant, by calibrating the absolute magnitude of nearby
supernovas with various distance determinations (e.g., Cepheids). There is still
some dispute over these calibration resulting in differences of about 10% for
H0. (For recent papers and references, see [43].)

In 1979, Tammann [44] and Colgate [45] independently suggested that at
higher redshifts this subclass of supernovas can be used to determine also the
deceleration parameter. In recent years this program became feasible, thanks
to the development of new technologies which made it possible to obtain
digital images of faint objects over sizable angular scales, and by making use
of big telescopes such as Hubble and Keck.

There are two major teams investigating high-redshift SNe Ia, namely the
“Supernova Cosmology Project” (SCP) and the “High-Z Supernova search
Team” (HZT). Each team has found a large number of SNe, and both groups
have published almost identical results. (For up-to-date information, see the
home pages [46] and [47].)

Before discussing the most recent results, a few remarks about the na-
ture and properties of type Ia SNe should be made. Observationally, they are
characterized by the absence of hydrogen in their spectra, and the presence of
some strong silicon lines near maximum. The immediate progenitors are most
probably carbon–oxygen white dwarfs in close binary systems, but it must be
said that these have not yet been clearly identified.6

In the standard scenario a white dwarf accretes matter from a non-
degenerate companion until it approaches the critical Chandrasekhar mass

6 This is perhaps not so astonishing, because the progenitors are presumably faint
compact dwarf stars.
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and ignites carbon burning deep in its interior of highly degenerate matter.
This is followed by an outward-propagating nuclear flame leading to a to-
tal disruption of the white dwarf. Within a few seconds the star is converted
largely into nickel and iron. The dispersed nickel radioactively decays to cobalt
and then to iron in a few hundred days. A lot of effort has been invested to
simulate these complicated processes. Clearly, the physics of thermonuclear
runaway burning in degenerate matter is complex. In particular, since the
thermonuclear combustion is highly turbulent, multidimensional simulations
are required. This is an important subject of current research. (One gets a
good impression of the present status from several articles in [48]. See also
the review [49].) The theoretical uncertainties are such that, for instance,
predictions for possible evolutionary changes are not reliable.

It is conceivable that in some cases a type Ia supernova is the result of
a merging of two carbon–oxygen-rich white dwarfs with a combined mass
surpassing the Chandrasekhar limit. Theoretical modeling indicates, however,
that such a merging would lead to a collapse, rather than an SN Ia explosion.
But this issue is still debated.

In view of the complex physics involved, it is not astonishing that type Ia
supernovas are not perfect standard candles. Their peak absolute magnitudes
have a dispersion of 0.3–0.5 mag, depending on the sample. Astronomers have,
however, learned in recent years to reduce this dispersion by making use of
empirical correlations between the absolute peak luminosity and light curve
shapes. Examination of nearby SNe showed that the peak brightness is corre-
lated with the time scale of their brightening and fading: slow decliners tend
to be brighter than rapid ones. There are also some correlations with spectral
properties. Using these correlations it became possible to reduce the remaining
intrinsic dispersion, at least in the average, to � 0.15 mag. (For the various
methods in use, and how they compare, see [50, 56], and references therein.)
Other corrections, such as Galactic extinction, have been applied, resulting
for each supernova in a corrected (rest-frame) magnitude. The redshift depen-
dence of this quantity is compared with the theoretical expectation given by
(41) and (39).

5.3 Results

After the classic papers [51–53] on the Hubble diagram for high-redshift type
Ia supernovas, published by the SCP and HZT teams, significant progress
has been made (for reviews, see [54] and [55]). I discuss first the main results
presented in [56]. These are based on additional new data for z > 1, obtained
in conjunction with the Great Observatories Origins Deep Survey (GOODS)
Treasury program, conducted with the Advanced Camera for Surveys (ACS)
aboard the Hubble Space Telescope (HST).

The quality of the data and some of the main results of the analysis are
shown in Fig. 1. The data points in the top panel are the distance moduli rela-
tive to an empty uniformly expanding universe, Δ(m−M), and the redshifts



Fig. 1. Distance moduli relative to an empty uniformly expanding universe (residual
Hubble diagram) for SNe Ia; see text for further explanations (Adapted from [56],
Fig. 7.)

of a “gold” set of 157 SNe Ia. In this “reduced” Hubble diagram the filled
symbols are the HST-discovered SNe Ia. The bottom panel shows weighted
averages in fixed redshift bins.

These data are consistent with the “cosmic concordance” model (ΩM =
0.3, ΩΛ = 0.7), with χ2

dof = 1.06. For a flat universe with a cosmological
constant, the fit gives ΩM = 0.29±0.13

0.19 (equivalently, ΩΛ = 0.71). The other
model curves will be discussed below. Likelihood regions in the (ΩM , ΩΛ)-
plane, keeping only these parameters in (39) and averaging H0, are shown in
Fig. 2. To demonstrate the progress, old results from 1998 are also included. It
will turn out that this information is largely complementary to the restrictions
we shall obtain from the CMB anisotropies.

In the meantime new results have been published. Perhaps the best high-z
SN Ia compilation to date are the results from the Supernova Legacy Survey
(SNLS) of the first year [57]. The other main research group has also published
new data at about the same time [58].

5.4 Systematic Uncertainties

Possible systematic uncertainties due to astrophysical effects have been dis-
cussed extensively in the literature. The most serious ones are (i) dimming by
intergalactic dust, and (ii) evolution of SNe Ia over cosmic time, due to changes
in progenitor mass, metallicity, and C/O ratio. I discuss these concerns only
briefly (see also [54, 56]).
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Fig. 2. Likelihood regions in the (ΩM , ΩΛ)-plane. The dotted contours are old
results from 1998. (Adapted from [56], Fig. 8.)

Concerning extinction, detailed studies show that high-redshift SN Ia suffer
little reddening; their B-V colors at maximum brightness are normal. How-
ever, it can a priori not be excluded that we see distant SNe through a grey
dust with grain sizes large enough as to not imprint the reddening signature
of typical interstellar extinction. One argument against this hypothesis is that
this would also imply a larger dispersion than is observed. In Fig. 1 the expec-
tation of a simple grey dust model is also shown. The new high-redshift data
reject this monotonic model of astrophysical dimming. Equation (46) shows
that at redshifts z ≥ (2ΩΛ/ΩM )1/3 − 1 � 1.2 the Universe is decelerating,
and this provides an almost unambiguous signature for Λ, or some effective
equivalent. There is now strong evidence for a transition from a deceleration
to acceleration at a redshift z = 0.46± 0.13.

The same data provide also some evidence against a simple luminosity evo-
lution that could mimic an accelerating Universe. Other empirical constraints
are obtained by comparing subsamples of low-redshift SN Ia believed to arise
from old and young progenitors. It turns out that there is no difference within
the measuring errors, after the correction based on the light-curve shape has
been applied. Moreover, spectra of high-redshift SNe appear remarkably sim-
ilar to those at low redshift. This is very reassuring. On the other hand, there
seems to be a trend that more distant supernovas are bluer. It would, of
course, be helpful if evolution could be predicted theoretically, but in view of
what has been said earlier, this is not (yet) possible.
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In conclusion, none of the investigated systematic errors appear to recon-
cile the data with ΩΛ = 0 and q0 ≥ 0. But further work is necessary before
we can declare this as a really established fact.

To improve the observational situation a satellite mission called SNAP
(“Supernovas Acceleration Probe”) has been proposed [59]. According to the
plans this satellite would observe about 2000 SNe within a year and much more
detailed studies could then be performed. For the time being some scepticism
with regard to the results that have been obtained is still not out of place,
but the situation is steadily improving.

Finally, I mention a more theoretical complication. In the analysis of the
data the luminosity distance for an ideal Friedmann universe was always used.
But the data were taken in the real inhomogeneous Universe. This may per-
haps not be good enough, especially for high-redshift standard candles. The
simplest way to take this into account is to introduce a filling parameter
which, roughly speaking, represents matter that exists in galaxies but not in
the intergalactic medium. For a constant filling parameter one can determine
the luminosity distance by solving the Dyer–Roeder equation. But now one
has an additional parameter in fitting the data. For a flat universe this was
investigated in [60]. We shall come back to this issue in Sect. 8.2.

6 Microwave Background Anisotropies

Investigations of the cosmic microwave background have presumably con-
tributed most to the remarkable progress in cosmology during recent years
(For a review, see [61]). Beside its spectrum, which is Planckian to an incred-
ible degree, we also can study the temperature fluctuations over the “cosmic
photosphere” at a redshift z ≈ 1100. Through these we get access to crucial
cosmological information (primordial density spectrum, cosmological param-
eters, etc.). A major reason for why this is possible relies on the fortunate
circumstance that the fluctuations are tiny (∼ 10−5) at the time of recombi-
nation. This allows us to treat the deviations from homogeneity and isotropy
for an extended period of time perturbatively, i.e., by linearizing the Einstein
and matter equations about solutions of the idealized Friedmann–Lemâıtre
models. Since the physics is effectively linear, we can accurately work out the
evolution of the perturbations during the early phases of the Universe, given
a set of cosmological parameters. Confronting this with observations tells us
a lot about the cosmological parameters as well as the initial conditions, and
thus about the physics of the very early Universe. Through this window to
the earliest phases of cosmic evolution we can, for instance, test general ideas
and specific models of inflation.

6.1 Qualitative Remarks

Let me begin with some qualitative remarks, before I go into more technical
details. Long before recombination (at temperatures T > 6000 K, say) pho-
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tons, electrons, and baryons were so strongly coupled that these components
may be treated together as a single fluid. In addition to this there is also
a dark matter component. For all practical purposes the two interact only
gravitationally. The investigation of such a two-component fluid for small de-
viations from an idealized Friedmann behavior is a well-studied application of
cosmological perturbation theory (see, e.g., [63]).

At a later stage, when decoupling is approached, this approximate treat-
ment breaks down because the mean free path of the photons becomes longer
(and finally “infinite” after recombination). While the electrons and baryons
can still be treated as a single fluid, the photons and their coupling to the
electrons have to be described by the general relativistic Boltzmann equation.
The latter is, of course, again linearized about the idealized Friedmann solu-
tion. Together with the linearized fluid equations (for baryons and cold dark
matter, say) and the linearized Einstein equations one arrives at a complete
system of equations for the various perturbation amplitudes of the metric and
matter variables. There exist widely used codes, e.g. CMBFAST [62], that
provide the CMB anisotropies – for given initial conditions – to a precision of
about 1%. A lot of qualitative and semi-quantitative insight into the relevant
physics can, however, be gained by looking at various approximations of the
basic dynamical system.

Let us first discuss the temperature fluctuations. What is observed is the
temperature autocorrelation:

C(ϑ) :=
〈
ΔT (n)

T
· ΔT (n′)

T

〉

=
∞∑

l=2

2l + 1
4π

ClPl(cosϑ) , (49)

where ϑ is the angle between the two directions of observation n,n′, and
the average is taken ideally over all sky. The angular power spectrum is by
definition l(l+1)

2π Cl versus l (ϑ � π/l).
A characteristic scale, which is reflected in the observed CMB anisotropies,

is the sound horizon at last scattering, i.e., the distance over which a pres-
sure wave can propagate until decoupling. This can be computed within the
unperturbed model and subtends about half a degree on the sky for typical
cosmological parameters. For scales larger than this sound horizon the fluctu-
ations have been laid down in the very early Universe. These have been de-
tected by the COBE satellite. The (gauge invariant brightness) temperature
perturbation Θ = ΔT/T is dominated by the combination of the intrinsic
temperature fluctuations and gravitational redshift or blueshift effects. For
example, photons that have to climb out of potential wells for high-density
regions are redshifted. One can show that these effects combine for adiabatic
initial conditions to 1

3Ψ , where Ψ is one of the two gravitational Bardeen po-
tentials. The latter, in turn, is directly related to the density perturbations.
For scale-free initial perturbations and almost vanishing spatial curvature the
corresponding angular power spectrum of the temperature fluctuations turns
out to be nearly flat (Sachs–Wolfe plateau in Fig. 3).
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On the other hand, inside the sound horizon before decoupling, acous-
tic, Doppler, gravitational redshift, and photon diffusion effects combine to
the spectrum of small angle anisotropies shown in Fig. 3. These result from
gravitationally driven synchronized acoustic oscillations of the photon–baryon
fluid, which are damped by photon diffusion.

A particular realization of Θ(n), such as the one accessible to us (all sky
map from our location), cannot be predicted. Theoretically, Θ is a random
field Θ(x, η,n), depending on the conformal time η, the spatial coordinates,
and the observing direction n. Its correlation functions should be rotationally
invariant in n, and respect the symmetries of the background time slices. If
we expand Θ in terms of spherical harmonics,

Θ(n) =
∑

lm

almYlm(n) , (50)

the random variables alm have to satisfy

〈alm〉 = 0, 〈a�lmal′m′〉 = δll′δmm′Cl(η) , (51)

where the Cl(η) depend only on η. Hence the correlation function at the
present time η0 is given by (49), where Cl = Cl(η0), and the bracket now
denotes the statistical average. Thus,

Cl =
1

2l + 1

〈
l∑

m=−l
a�lmalm

〉

. (52)

The standard deviations σ(Cl) measure a fundamental uncertainty in the
knowledge we can get about the Cl’s. These are called cosmic variances, and
are most pronounced for low l. In simple inflationary models the alm are
Gaussian distributed, hence

σ(Cl)
Cl

=

√
2

2l + 1
. (53)

Therefore, the limitation imposed on us (only one sky in one universe) is small
for large l.

6.2 Boltzmann Hierarchy

The brightness temperature fluctuation can be obtained from the perturbation
of the photon distribution function by integrating over the magnitude of the
photon momenta. The linearized Botzmann equation can then be translated
into an equation for Θ, which we now regard as a function of η, xi, and γj ,
where the γj are the directional cosines of the momentum vector relative to
an orthonormal triad field of the unperturbed spatial metric with curvature
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K. Next one performs a harmonic decomposition of Θ, which reads for the
spatially flat case (K = 0)

Θ(η,x,γ) = (2π)−3/2

∫

d3k
∑

l

θl(η, k)Gl(x,γ; k) , (54)

where
Gl(x,γ; k) = (−i)lPl(k̂ · γ) exp(ik · x) . (55)

The dynamical variables θl(η) are the brightness moments, and should be
regarded as random variables. Boltzmann’s equation implies the following
hierarchy of ordinary differential equations for the brightness moments7 θl(η)
(if polarization effects are neglected):

θ′0 = −1
3
kθ1 − Φ′ , (56)

θ′1 = k
(
θ0 + Ψ − 2

5
θ2

)
− τ̇ (θ1 − Vb) , (57)

θ′2 = k
(2

3
θ1 − 3

7
θ3

)
− τ̇

9
10

θ2 , (58)

θ′l = k
( l

2l− 1
θl−1 − l + 1

2l + 3
θl+1

)
, l > 2 . (59)

Here, Vb is the gauge invariant scalar velocity perturbation of the baryons,
τ̇ = xeneσT a/a0, where a is the scale factor, xene the unperturbed free elec-
tron density (xe = ionization fraction), and σT the Thomson cross section.
Moreover, Φ and Ψ denote the Bardeen potentials. (For further details, see,
e.g., Sect. 6 of [3] or [63], where cosmological perturbation theory is developed
in great detail.)

The Cl are determined by an integral over k, involving a primordial power
spectrum (of curvature perturbations) and the |θl(η)|2, for the corresponding
initial conditions (their transfer functions).

This system of equations is completed by the linearized fluid and Einstein
equations. Various approximations for the Boltzmann hierarchy provide al-
ready a lot of insight. In particular, one can very nicely understand how
damped acoustic oscillations are generated, and in which way they are in-
fluenced by the baryon fraction (again, see [3] or [63]). A typical theoretical
CMB spectrum is shown in Fig. 3. (Beside the scalar contribution in the sense
of cosmological perturbation theory, considered so far, the tensor contribution
due to gravity waves is also shown there.)

6.3 Polarization

A polarization map of the CMB radiation provides important additional in-
formation to that obtainable from the temperature anisotropies. For example,
7 In the literature the normalization of the θl is sometimes chosen differently: θl →

(2l + 1)θl.
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Fig. 3. Theoretical angular temperature–temperature (TT) power spectrum for
adiabatic initial perturbations and typical cosmological parameters. The scalar and
tensor contributions to the anisotropies are also shown

we can get constraints about the epoch of reionization. Most importantly, fu-
ture polarization observations may reveal a stochastic background of gravity
waves, generated in the very early Universe. In this section we give a brief
introduction to the study of CMB polarization.

The mechanism which partially polarizes the CMB radiation is similar
to that for the scattered light from the sky. Consider first scattering at a
single electron of unpolarized radiation coming in from all directions. Due
to the familiar polarization dependence of the differential Thomson cross
section, the scattered radiation is, in general, polarized. It is easy to com-
pute the corresponding Stokes parameters. Not surprisingly, they are not
all equal to zero if and only if the intensity distribution of the incom-
ing radiation has a non-vanishing quadrupole moment. The Stokes param-
eters Q and U are proportional to the overlap integral with the combina-
tions Y2,2 ± Y2,−2 of the spherical harmonics, while V vanishes. This is ba-
sically the reason why a CMB polarization map traces (in the tight cou-
pling limit) the quadrupole temperature distribution on the last scattering
surface.

The polarization tensor of an all sky map of the CMB radiation can be
parametrized in temperature fluctuation units, relative to the orthonormal
basis {dϑ, sinϑ dϕ} of the two sphere, in terms of the Pauli matrices as
Θ · 1 + Qσ3 + Uσ1 + V σ2. The Stokes parameter V vanishes (no circular
polarization). Therefore, the polarization properties can be described by the
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following symmetric trace-free tensor on S2:

(Pab) =
(

Q U
U −Q

)

. (60)

As for gravity waves, the components Q and U transform under a rotation
of the 2-bein by an angle α as

Q± iU → e±2iα(Q± iU) , (61)

and are thus of spin-weight 2. Pab can be decomposed uniquely into electric
and magnetic parts:

Pab = E;ab − 1
2
gabΔE +

1
2
(εacB;bc + εb

cB;ac) . (62)

Expanding here the scalar functions E and B in terms of spherical harmonics,
we obtain an expansion of the form

Pab =
∞∑

l=2

∑

m

[
aE(lm)Y

E
(lm)ab + aB(lm)Y

B
(lm)ab

]
(63)

in terms of the tensor harmonics:

Y E
(lm)ab := Nl(Y(lm);ab − 1

2
gabY(lm);c

c), Y B
(lm)ab :=

1
2
Nl(Y(lm);acε

c
b + a↔ b) ,

(64)
where l ≥ 2 and

Nl ≡
(

2(l − 2)!
(l + 2)!

)1/2

.

Equivalently, one can write this as

Q + iU =
√

2
∞∑

l=2

∑

m

[
aE(lm) + iaB(lm)

]

2Y
m
l , (65)

where sY
m
l are the spin-s harmonics.

As in (50) the multipole moments aE(lm) and aB(lm) are random variables,
and we have equations analogous to (52):

CTE
l =

1
2l + 1

∑

m

〈aΘ�lmaElm〉, etc . (66)

(We have now put the superscript Θ on the alm of the temperature fluc-
tuations.) The Cl’s determine the various angular correlation functions. For
example, one easily finds

〈Θ(n)Q(n′)〉 =
∑

l

CTE
l

2l + 1
4π

NlP
2
l (cosϑ) . (67)
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For the spacetime-dependent Stokes parameters Q and U of the radiation
field we can perform a normal mode decomposition analogous to (54). If, for
simplicity, we again consider only scalar perturbations this reads

Q± iU = (2π)−3/2

∫

d3k
∑

l

(El ± iBl)±2G
0
l , (68)

where

sG
m
l (x,γ; k) = (−i)l

(
2l + 1

4π

)1/2

sY
m
l (γ) exp(ik · x) , (69)

if the mode vector k is chosen as the polar axis. (Note that Gl in (55) is equal
to 0G

0
l .)

The Boltzmann equation implies a coupled hierarchy for the moments
θl, El, and Bl [64, 65]. It turns out that the Bl vanish for scalar perturbations.
Non-vanishing magnetic multipoles would be a unique signature for a spec-
trum of gravity waves. In a sudden decoupling approximation, the present elec-
tric multipole moments can be expressed in terms of the brightness quadrupole
moment on the last scattering surface and spherical Bessel functions as

El(η0, k)
2l + 1

� 3
8
θ2(ηdec, k)

l2jl(kη0)
(kηo)2

. (70)

Here one sees how the observable El’s trace the quadrupole temperature
anisotropy on the last scattering surface. In the tight coupling approxima-
tion the latter is proportional to the dipole moment θ1.

7 Observational Results
and Cosmological Parameters

In recent years several experiments gave clear evidence for multiple peaks in
the angular temperature power spectrum at positions expected on the basis of
the simplest inflationary models and big bang nucleosynthesis [66]. These re-
sults have been confirmed and substantially improved by the first-year WMAP
data [67, 68, 72]. Fortunately, the improved data after three years of integra-
tion are now available [69]. Below we give a brief summary of some of the
most important results.

Figure 4 shows the 3-year data of WMAP for the TT angular power spec-
trum, and the best fit (power law) ΛCDM model. The latter is a spatially flat
model and involves the following six parameters: Ωbh2

0, ΩMh2
0, H0, amplitude

of fluctuations,8 σ8, optical depth τ , and the spectral index, ns, of the primor-
dial scalar power spectrum (see Appendix C.7). Figure 5 shows in addition
the TE polarization data [70]. There are now also EE data that lead to a
further reduction of the allowed parameter space. The first column in Table 1
shows the best fit values of the six parameters, using only the WMAP data.
8 σ2

8 is the variance of mass fluctuations in spheres of radius 8 h−1
0 Mpc. ( For a

precise definition, see, e.g., Appendix A of [63].)
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Fig. 4. Three-year WMAP data for the temperature–temperature (TT) power spec-
trum. The black line is the best fit ΛCDM model for the 3-year WMAP data.
(Adapted from Fig. 2 of [69])
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Table 1.

Parameter WMAP alone WMAP + 2dFGRS

100Ωbh
2
0 2.233+0.072

−0.0.091 2.223+0.066
−0.083

ΩMh2
0 0.1268+0.0073

−0.0128 0.1262+0.0050
−0.0103

h0 0.734+0.028
−0.038 0.732+0.018

−0.025

ΩM 0.238+0.027
−0.045 0.236+0.016

−0.029

σ8 0.744+0.050
−0.060 0.737+0.033

−0.045

τ 0.088+0.028
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.948+0.014

−0.018

Figure 6 shows the prediction of the model for the luminosity-redshift
relation, together with the SLNS data [57] mentioned in Sect. 5.3. For other
predictions and corresponding data sets, see [69].

Combining the WMAP results with other astronomical data reduces the
uncertainties for some of the six parameters. This is illustrated in the second
column which shows the 68% confidence ranges of a joint likelihood analysis
when the power spectrum from the completed 2dFGRS [73] is added. In [69]
other joint constraints are listed (see their Tables 5, 6). In Fig. 7 we reproduce
one of many plots in [69] that shows the joint marginalized contours in the
(ΩM , h0)-plane.

SNLS (Astier et al.'05)

Flat ΛCDM

Empty Universe

0.6
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μ-
μ e

m
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y

0.2
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0 0.5 1.0 1.5 2.0

0

Fig. 6. Prediction for the luminosity-redshift relation from the ΛCDM model model
fit to the WMAP data only. The ordinate is the deviation of the distance modulous
from the empty universe model. The prediction is compared to the SNLS data [57].
(From Fig. 8 of [69])



Fig. 7. Joint marginalized contours (68% and 95% confidence levels) in the
(ΩM , h0)-plane for WMAP only (solid lines) and additional data (filled red) for
the power-law ΛCDM model. (From Fig. 10 in [69])

The parameter space of the cosmological model can be extended in various
ways. Because of intrinsic degeneracies, the CMB data alone are no more suf-
ficient to determine unambiguously the cosmological model parameters. We
illustrate this for non-flat models. For these the WMAP data (in particular,
the position of the first acoustic peak) restricts the curvature parameter ΩK
to a narrow region around the degeneracy line ΩK = −0.3040+0.4067, ΩΛ =
0.758+0.035

−0.058. This does not exclude models with ΩΛ = 0. However, when,
for instance, the Hubble constant is restricted to an acceptable range, the
universe must be nearly flat. For example, the restriction h0 = 0.72 ± 0.08
implies that ΩK = −0.003+0.013

−0.017. Other strong limits are given in Table 11
of [69], assuming that w = −1. But even when this is relaxed, the combined
data constrain ΩK and w significantly (see Fig. 17 of [69]). The marginal-
ized best fit values are w = −1.062+0.128

−0.079, ΩK = −0.024+0.016
−0.013 at the 68%

confidence level.
The restrictions on w – assumed to have no z-dependence – for a flat model

are illustrated in Fig. 8.
Another interesting result is that reionization of the Universe has set in

at a redshift of zr = 10.9+2.7
−2.3. Later we shall add some remarks on what has

been learnt about the primordial power spectrum.
It is most remarkable that a six parameter cosmological model is able to

fit such a rich body of astronomical observations. There seems to be little
room for significant modifications of the successful ΛCDM model. In spite of
this we discuss in the next section some proposed attempts to explain the
observations without dark energy.
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Fig. 8. Constraints on the equation of state parameter w in a flat universe model
when WMAP data are combined with the 2dFGRS data. (From Fig. 15 in [69])

8 Alternatives to Dark Energy

In the previous two sections we have discussed some of the wide range of
astronomical data that support the following ‘concordance model’: The Uni-
verse is spatially flat and dominated by a dark energy component and weakly
interacting cold dark matter. Furthermore, the primordial fluctuations are
adiabatic, nearly scale invariant and Gaussian, as predicted in simple infla-
tionary models (see Sect. C.7). It is very likely that the present concordance
model will survive phenomenologically.

A dominant dark energy component with density parameter � 0.7 is so
surprising that it should be examined whether this conclusion is really un-
avoidable. In what follows I shall briefly discuss some alternatives that have
been proposed.

8.1 Changes in the Initial Conditions

Since we do not have a tested theory predicting the spectrum of primordial
fluctuations, it appears reasonable to consider a wider range of possibilities
than simple power laws. An instructive attempt in this direction was made
some time ago [74], by constructing an Einstein–de Sitter model with ΩΛ = 0,
fitting the CMB data as well as the power spectrum of 2dFGRS. In this the
Hubble constant is, however, required to be rather low: H0 � 46 km/s/Mpc.
The authors argued that this cannot definitely be excluded, because ‘physical’
methods lead mostly to relatively low values of H0. In order to be consistent
with matter fluctuations on cluster scales they added relic neutrinos with de-
generate masses of order eV or a small contribution of quintessence with zero
pressure (w = 0). In addition, they ignored the direct evidence for an acceler-
ating Universe from the Hubble-diagram for distant Type Ia supernovae, on
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the basis of remaining systematic uncertainties. In the meantime, significant
improvements in astronomical data sets have been made. In particular, the
analysis of the 3-year WMAP data showed that there are no significant fea-
tures in the primordial curvature fluctuation spectrum (see Sect. 5 of [69]).
With the larger samples of high redshift supernovae and more precise informa-
tion on large-scale galaxy clustering, such models with vanishing dark energy
are no more possible [75].

8.2 Inhomogeneous Models

Backreaction

It has recently been suggested [76, 77] that perturbations on scales larger than
the Hubble length, likely generated in the context of inflation, could mimic
dark energy and cause acceleration. This suggestion caused a lot of discussion,
and several papers addressed the question whether this is really possible.
We repeat below a simple general argument given in [78] that the originally
proposed mechanism cannot lead to acceleration, under the assumptions made
in the cited papers. These include that the 4-velocity field uμ of the CDM
particles is geodesic and has zero vorticity ωμν . It is easy to see that these
assumptions imply that the 1-form u, belonging to the velocity field, has
a vanishing exterior derivative. Hence we have locally u = dt, thus uμ is
perpendicular to the slices {t = const}. Moreover the metric and the velocity
have the form

g = −dt2 + ḡt, u = ∂t , (71)

where ḡt is a t-dependent metric on slices of constant time t.
For such an inhomogeneous cosmological model one can introduce various

definitions of the deceleration parameter which reduce to the familiar one for
Friedmann models. We adopt here the one used in [77]. To motivate this,
consider for some initial time tin a spatial domain D and let this evolve
according to the flow of u. If ωt denotes the volume form belonging to ḡt,
then we have for the volume |Dt| and its time derivatives

|Dt| =
∫

ωt, ˙|Dt| =
∫

θωt, ¨|Dt| =
∫

(θ̇ + θ2)ωt , (72)

where θ = ∇ · u denotes the expansion. If l := |Dt|1/3, a natural definition of
the deceleration parameter is q = −(ll̈)/l̇2. This can be expressed as follows

1
3

( ˙|Dt|)2
|Dt|2 q = −

(
¨|Dt|
|Dt| −

2
3

( ˙|Dt|)2
|Dt|2

)

. (73)

For an infinitesimal |Dt| we obtain from the previous equations

1
3
θ2q = −(θ̇ +

1
3
θ2) . (74)
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For the right-hand side we can now use the Raychaudhuri equation

θ̇ +
1
3
θ2 = −σμνσ

μν + ωμνω
μν −Rμνu

μuν , (75)

where σμν is the shear. For a vanishing vorticity, and imposing the strong
energy condition (assumed in [77]), we see that q ≥ 0. In this sense there is
no acceleration.

A priori, a way out proposed in [76], is to argue that q as defined above
is not what is measured in SN Ia observations. To analyze these one has to
generalize the redshift–luminosity distance relation to inhomogeneous models.
In doing this, two possible definitions for the deceleration parameter arise. One
of them (q4 in [78]) again has to be non-negative if the strong energy condition
holds. The other (q3 in [78]) may be negative, but in this case the supernova
data would have to show acceleration in certain directions and deceleration
in others. This is, however, not observed.

Kolb et al. have reacted to these considerations [79]. They admit that
super-Hubble modes cannot lead to an acceleration, but they maintain that
sub-Hubble modes may cause a large backreaction that may imply an effective
acceleration. The authors stress that for investigating the effective dynamics
averaging over a volume of size comparable with the present-day Hubble vol-
ume is essential. Let me add a few remarks on this. Adopting the notation

〈θ〉 =
∫
θωt∫
ωt

, etc , (76)

and using the Raychaudhuri equation, we can write

1
3

(|Dt|·)2
|Dt|2 q = −〈θ̇ + θ2〉+ 2

3
〈θ〉2

= −〈θ̇ +
1
3
θ2〉 − 2

3
(〈θ2〉 − 〈θ〉2)

= 〈σμνσμν + Rμνu
μuν〉 − 2

3
(〈θ2〉 − 〈θ〉2) . (77)

The first term in the last equation, is non-negative if the strong energy
condition holds, while the second term is non-positive.

The authors of [79] suggest that the second term may win and make q
negative. To decide on the basis of detailed calculations whether this is indeed
possible is a very difficult task. From what we know about the CMB radiation
it appears, however, unlikely that there are such sizable perturbations out to
very large scales. We shall say more about this in the next section.

The work by Kolb et al. triggered a lot of activity. (For a review, see [80].)
We add some remarks about the ongoing discussion.

Power Spectrum of the Luminosity Distance

The deceleration parameter, defined in (73), has a simple geometrical meaning,
but is not a directly measurable quantity. From an observational point of view,
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a more satisfactory approach is to generalize the magnitude–redshift relation,
and study the fluctuations of the luminosity distance.

The magnitude–redshift relation in a perturbed Friedmann model has been
derived in [81], and was later used to determine the angular power spectrum
of the luminosity distance (the Cl’s defined in analogy to (49)) [82]. One of
the numerical results was that the uncertainties in determining cosmological
parameters via the magnitude–redshift relation caused by fluctuations are
small compared with the intrinsic dispersion in the absolute magnitude of
Type Ia supernovae.

This subject was recently taken up in [83], as part of a program to de-
velop the tools for extracting cosmological parameters, when much extended
supernovae data become available.

Exact Inhomogeneous Model Studies

Effects of inhomogeneous matter distribution on light propagation were re-
cently studied in the Lemâıtre–Tolman (LT) model, in order to see whether
these can mimic an accelerated expansion.

The LT model is a family of spherically symmetric dust solutions of
Einstein’s equations, with a metric of the form

g = −dt2 +
R2
,r(r, t)

1 + 2E(r)
dr2 + R2(r, t)(dϑ2 + sin2 ϑdϕ2) . (78)

The metric functions E(r), R(r, t), and a matter function M(r) satisfy, as a
consequence of Einstein’s equations, the differential equations

M,r = 4πρR2R,r, R2
,t = 2E +

2GM

R
+

1
3
ΛR2 . (79)

For these models the magnitude–redshift relation can be worked out exactly.
As an example we mention [84], where it was shown that for Λ = 0 the

observed behavior of supernovae brightness cannot be fitted, unless our po-
sition in the model universe is very special. In that case one has to analyze
also other data, in particular the CMB angular power spectrum. At the time
of writing, this has not yet been done, but is certainly underway.

8.3 Modifications of Gravity

Since no satisfactory explanation of dark energy has emerged so far, possi-
ble modifications of GR, which would change the late expansion rate of the
universe, have recently come into the focus of attention. The cosmic speed-up
might, for instance, be explained by sub-dominant terms (like 1/R) that be-
come essential at small curvature. Modified gravity models have to be devised
such that to pass the stringent Solar System tests, and are compatible with
the observational data that support the concordance model.
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Generalizations of the Einstein–Hilbert Action

The simplest generalization consists in replacing the Ricci scalar, R, in the
Einstein–Hilbert action by a function f(R). Note that this gives rise to fourth-
order field equations.9 Applying a suitable conformal transformation of the
metric, the action becomes equivalent to a scalar-tensor theory. In detail, if
we define a new metric g̃μν =

[
exp(2κ/3)1/2ϕ

]
gμν , then the action becomes

S =
∫ [

1
2κ

R[g̃]− 1
2
g̃αβ∂αϕ∂βϕ− V (ϕ) + Lmatter

]
√
−g̃d4x , (80)

where the potential V is determined by the function f . With this formulation
one can, for instance, show that an arbitrary evolution of the scale factor a(t)
can be obtained with an appropriate choice of f(R). It is also useful to check
whether a particular model passes Solar System tests (acceptable Brans-Dicke
parameter). One should, however, bear in mind that the two mathematically
equivalent descriptions lead to physically different properties, for instance with
regard to stability. These issues and the application for specific functions f to
Friedmann spacetimes have recently been reviewed in [85].

A class of models that lead to cosmic acceleration is of the form f(R) =
R + α/Rn, n > 0. There has been a debate on whether such models (espe-
cially for n = 1) are consistent with Solar System tests. Some authors argued
that this is the case, because they admit as a static spherically symmetric
solution the Schwarzschild–de Sitter metric. This is, however, by no means
sufficient. As already emphasized, this vacuum solution is far from unique.
The correct one must match onto a physically acceptable solution for the in-
terior of the star. In [86] it was shown for n = 1, i.e., for f(R) = R − μ4/R,
that this requirement implies for the PPN parameter γ the value 1/2, in
gross violation of the measured value γ = 1 + (2.1 ± 2.3) × 10−5. This con-
firms an earlier claim by Chiba [87] that was based on the scalar-tensor
reformulation (80).

Presumably, similar statements can be made for a large class of f(R)
models. Apart from their ad hoc nature, it has not yet been demonstrated
that there are examples which satisfy all the constraints stressed above.
The same can be said on generalizations [88], which include other curvature
invariants, such as RμνR

μν , RαβγδR
αβγδ. In addition, such models are in

most cases unstable, like mechanical Lagrangian systems with higher deriva-
tives [89].10 An exception seem to be Lagrangians which are functions of
9 Spherically symmetric vacuum solutions are, therefore, far from unique. Con-

nected with this is that Birkhoff’s theorem fails. So, on the basis of the vacuum
equations the perihelion motion (for example) is no more predicted, but at best
compatible with the theory. This is an enormous loss. (The reader may reflect
about other drawbacks.)

10 This paper contains a discussion of a generic instability of Lagrangian systems in
mechanics with higher derivatives, which was discovered by M. Ostrogradski in
1850.



364 N. Straumann

R and the Gauss–Bonnet invariant G = R2 − 4RμνRμν + RαβγδR
αβγδ. By

introducing two scalar fields such models can be written as an Einstein–
Hilbert term plus a particular extra piece, containing a linear coupling to
G. Because the Gauss–Bonnet invariant is a total divergence the correspond-
ing field equations are of second order. This does, however, not guarantee
that the theory is ghost-free. In [90] this question was studied for a class
of models [88] for which there exist accelerating late-time power-law attrac-
tors and which satisfy the solar system constraints. It turned out that in a
Friedmann background there are no ghosts, but there is instead superluminal
propagation for a wide range of parameter space. This acausality is remi-
niscent of the Velo-Zwanziger phenomenon [92] for higher (> 1) spin fields
coupled to external fields. It may very well be that it can only be avoided if
very special conditions are satisfied. This issue deserves further investigations.
See also [91].

First-Order Modifications of GR

The disadvantage of complicated fourth-order equations can be avoided by
using the Palatini variational principle, in which the metric and the sym-
metric affine connection (the Christoffel symbols Γαμν) are considered to be
independent fields.11

For GR the ‘Palatini formulation’ is equivalent to the Einstein–Hilbert
variational principle, because the variational equation with respect to Γαμν
implies that the affine connection has to be the Levi–Civita connection. Things
are no more that simple for f(R) models:

S =
∫ [

1
2κ

f(R) + Lmatter

]√−gd4x , (81)

where R[g, Γ ] = gαβRαβ [Γ ], Rαβ [Γ ] being the Ricci tensor of the independent
torsionless connection Γ . The equations of motion are in obvious notation

f ′(R)R(μν)[Γ ]− 1
2
f(R)gμν = κTμν , (82)

∇Γα
(√−gf ′(R)gμν

)
= 0 . (83)

For the second of these equations one has to assume that Lmatter is function-
ally independent of Γ . (It may, however, contain metric covariant derivatives.)

Equation (83) implies that

∇Γα
[√
−ĝĝμν

]
= 0 (84)

for the conformally equivalent metric ĝμν = f ′(R)gμν . Hence, the Γαμν are
equal to the Christoffel symbols for the metric ĝμν .
11 This approach was actually first introduced by Einstein (S.B. Preuss. Akad. Wiss.,

414 (1925)). This is correctly stated in Pauli’s classical text, p. 215.
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The trace of (82) gives

Rf ′(R)− 2f(R) = κT .

Thanks to this algebraic equation we may regard R as a function of T . In
the matter-free case it is identically satisfied if f(R) is proportional to R2. In
all other cases R is equal to a constant c (which is in general not unique). If
f ′(c) �= 0, (83) implies that Γ is the Levi–Civita connection of gμν , and (82)
reduces to Einstein’s vacuum equation with a cosmological constant. In gen-
eral, one can rewrite the field equations in the form of Einstein gravity with
non-standard matter couplings.12 Because of this it is, for instance, straight-
forward to develop cosmological perturbation theory [94].

Koivisto [95] has applied this to study the resulting matter power spec-
trum, and showed that the comparison with observations leads to strong
constraints. The allowed parameter space for a model of the form f(R) =
R − αRβ (α > 0, β < 1) is reduced to a tiny region around the ΛCDM
cosmology. For a related investigation, see [96].

The literature on this type of generalized gravity models is rapidly
increasing.

Brane-World Models

Certain brane-world models13 lead to modifications of Friedmann cosmol-
ogy at very large scales. An interesting example has been proposed by
Dvali, Gabadadze, and Porrati (DGP), for which the theory remains four-
dimensional at ‘short’ distances, but crosses over to higher-dimensional be-
havior of gravity at some very large distance [97]. This model has the same
number of parameters as the successful ΛCDM cosmology, but contains no
dark energy. The resulting modified Friedmann equations can give rise to uni-
verses with accelerated expansion, due to an infrared modification of gravity.

In [100] the predictions of the model have been confronted with latest
supernovae data [57], and the position of the acoustic peak in the Sloan digital
sky survey (SDSS) correlation function for a luminous red galaxy sample [101].
The result is that a flat DGP brane model is ruled out at 3σ. A similar analysis
was more recently performed in [99], including also the CMB shift parameter
that effectively determines the first acoustic peak (see Sect. 8.1). The authors
arrive at the conclusion that the flat DGP models are within the 1σ contours,
but that the flat ΛCDM model provides a better fit to the data. They also
point out some level of uncertainty in the use of the data, and conservatively
conclude that the flat DGP models are within joint 2σ contours.

12 It is shown in [93] that if the matter action is independent of Γ , the theory
is dynamically equivalent to a Brans-Dicke theory with Brans-Dicke parameter
−3/2, plus a potentiel term.

13 For a review, see [98].
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This nicely illustrates that observational data are restricting theoretical
speculations more and more.

The DGP models have, however, serious defects on a fundamental level. A
detailed analysis of the excitations about the self-accelerating solution showed
that there is a ghost mode (negative kinetic energy) [102, 103]. Furthermore,
it has very recently been pointed out [104] that due to superluminal fluctua-
tions around non-trivial backgrounds, there is no local causal evolution. This
infrared breakdown also happens for other apparently consistent low-energy
effective theories.

* * *

The previous discussion should have made it clear that it is extremely
difficult to construct consistent modifications of GR that lead to an accelerated
universe at late times. The dark energy problems will presumably stay with us
for a long time. Understanding the nature of DE is widely considered as one
of the main goals of cosmological research for the next decade and beyond.

A Essentials of Friedmann–Lemâıtre Models

In this Appendix those parts of the standard model of cosmology that are
needed throughout the text will be briefly introduced. More extensive treat-
ments can be found at many places, for instance in the recent textbooks on
cosmology [105], [106], [107], [108], [109].

A.1 Friedmann–Lemâıtre Spacetimes

There is now good evidence that the (recent as well as the early) Universe14 is –
on large scales – surprisingly homogeneous and isotropic. The most impressive
support for this comes from extended redshift surveys of galaxies and from
the truly remarkable isotropy of the CMB. In the two degree field (2dF)
galaxy redshift survey,15 completed in 2003, the redshifts of about 250,000
galaxies have been measured. The distribution of galaxies out to 4 billion
light years shows that there are huge clusters, long filaments, and empty
voids measuring over 100 million light years across. But the map also shows

14 By Universe I always mean that part of the world around us which is in prin-
ciple accessible to observations. In my opinion the ‘Universe as a whole’ is not
a scientific concept. When talking about model universes, we develop on paper
or with the help of computers, I tend to use lower case letters. In this domain
we are, of course, free to make extrapolations and venture into speculations, but
one should always be aware that there is the danger to be drifted into a kind of
‘cosmo-mythology’.

15 Consult the Home Page: http://www.mso.anu.edu. au/2dFGRS.
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that there are no larger structures. The more extended SDSS has already
produced very similar results, and will in the end have spectra of about a
million galaxies.16

One arrives at the Friedmann(–Lemâıtre–Robertson–Walker) spacetimes
by postulating that for each observer, moving along an integral curve of
a distinguished four-velocity field u, the Universe looks spatially isotropic.
Mathematically, this means the following: Let Isox(M) be the group of local
isometries of a Lorentz manifold (M, g), with fixed point x ∈ M , and let
SO3(ux) be the group of all linear transformations of the tangent space Tx(M)
which leave the four-velocity ux invariant and induce special orthogonal trans-
formations in the subspace orthogonal to ux, then

{Txφ : φ ∈ Isox(M), φ�u = u} ⊇ SO3(ux)

(φ� denotes the push-forward belonging to φ; see [1], p. 550). In [110] it
is shown that this requirement implies that (M, g) is a Friedmann space-
time, whose structure we now recall. Note that (M, g) is then automatically
homogeneous.

A Friedmann spacetime (M, g) is a warped product of the form M = I×Σ,
where I is an interval of R, and the metric g is of the form

g = −dt2 + a2(t)γ , (85)

such that (Σ, γ) is a Riemannian space of constant curvature k = 0,±1. The
distinguished time t is the cosmic time, and a(t) is the scale factor (it plays the
role of the warp factor (see Appendix B of [1])). Instead of t we often use the
conformal time η, defined by dη = dt/a(t). The velocity field is perpendicular
to the slices of constant cosmic time, u = ∂/∂t.

Spaces of Constant Curvature

For the space (Σ, γ) of constant curvature17 the curvature is given by

R(3)(X,Y )Z = k [γ(Z, Y )X − γ(Z,X)Y ] ; (86)

in components
R

(3)
ijkl = k(γikγjl − γilγjk) . (87)

Hence, the Ricci tensor and the scalar curvature are

R
(3)
jl = 2kγjl , R(3) = 6k . (88)

16 For a description and pictures, see the Home Page: http://www.sdss.org/
sdss.html.

17 For a detailed discussion of these spaces I refer – for readers knowing German –
to [111] or [112].
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For the curvature two-forms we obtain from (87) relative to an orthonormal
triad {θi}

Ω
(3)
ij =

1
2
R

(3)
ijkl θ

k ∧ θl = k θi ∧ θj (89)

(θi = γikθ
k). The simply connected constant curvature spaces are in n dimen-

sions the (n+1)-sphere Sn+1 (k = 1), the Euclidean space (k = 0), and the
pseudo-sphere (k = −1). Non-simply connected constant curvature spaces are
obtained from these by forming quotients with respect to discrete isometry
groups. (For detailed derivations, see [111].)

Curvature of Friedmann Spacetimes

Let {θ̄i} be any orthonormal triad on (Σ, γ). On this Riemannian space the
first-structure equations read (we use the notation in [1]; quantities referring
to this three-dimensional space are indicated by bars)

dθ̄i + ω̄ij ∧ θ̄j = 0 . (90)

On (M, g) we introduce the following orthonormal tetrad:

θ0 = dt, θi = a(t)θ̄i . (91)

From this and (90) we get

dθ0 = 0, dθi =
ȧ

a
θ0 ∧ θi − a ω̄ij ∧ θ̄j . (92)

Comparing this with the first-structure equation for the Friedmann manifold
implies

ω0
i ∧ θi = 0, ωi0 ∧ θ0 + ωij ∧ θj =

ȧ

a
θi ∧ θ0 + a ω̄ij ∧ θ̄j , (93)

whence

ω0
i =

ȧ

a
θi, ωij = ω̄ij . (94)

The worldlines of comoving observers are integral curves of the four-
velocity field u = ∂t. We claim that these are geodesics, i.e., that

∇uu = 0 . (95)

To show this (and for other purposes) we introduce the basis {eμ} of vector
fields dual to (91). Since u = e0 we have, using the connection forms (94),

∇uu = ∇e0e0 = ωλ0(e0)eλ = ωi0(e0)ei = 0 .
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A.2 Einstein Equations for Friedmann Spacetimes

Inserting the connection forms (94) into the second-structure equations we
readily find for the curvature 2-forms Ωμ

ν :

Ω0
i =

ä

a
θ0 ∧ θi, Ωi

j =
k + ȧ2

a2
θi ∧ θj . (96)

A routine calculation leads to the following components of the Einstein tensor
relative to the basis (91)

G00 = 3
(
ȧ2

a2
+

k

a2

)

, (97)

G11 = G22 = G33 = −2
ä

a
− ȧ2

a2
− k

a2
, (98)

Gμν = 0 (μ �= ν) . (99)

In order to satisfy the field equations, the symmetries of Gμν imply
that the energy–momentum tensor must have the perfect fluid form (see [1],
Sect. 1.4.2):

T μν = (ρ + p)uμuν + pgμν , (100)

where u is the comoving velocity field introduced above.
Now, we can write down the field equations (including the cosmological

term),

3
(
ȧ2

a2
+

k

a2

)

= 8πGρ + Λ , (101)

−2
ä

a
− ȧ2

a2
− k

a2
= 8πGp− Λ . (102)

Although the ‘energy–momentum conservation’ does not provide an inde-
pendent equation, it is useful to work this out. As expected, the momentum
‘conservation’ is automatically satisfied. For the ‘energy conservation’ we use
the general form (see (1.37) in [1])

∇uρ = −(ρ + p)∇ · u . (103)

In our case we have for the expansion rate

∇ · u = ωλ0(eλ)u0 = ωi0(ei) ,

thus with (94)

∇ · u = 3
ȧ

a
. (104)

Therefore, (103) becomes

ρ̇ + 3
ȧ

a
(ρ + p) = 0 . (105)
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For a given equation of state, p = p(ρ), we can use (105) in the form

d

da
(ρa3) = −3pa2 (106)

to determine ρ as a function of the scale factor a. Examples: (1) For free
massless particles (radiation) we have p = ρ/3, thus ρ ∝ a−4. (2) For dust
(p = 0) we get ρ ∝ a−3.

With this knowledge the Friedmann equation (101) determines the time
evolution of a(t). It is easy to see that (102) follows from (101) and (105).

As an important consequence of (101) and (102) we obtain for the accel-
eration of the expansion

ä = −4πG
3

(ρ + 3p)a +
1
3
Λa . (107)

This shows that as long as ρ + 3p is positive, the first term in (107) is de-
celerating, while a positive cosmological constant is repulsive. This becomes
understandable if one writes the field equation as

Gμν = κ(Tμν + TΛμν) (κ = 8πG) , (108)

with
TΛμν = − Λ

8πG
gμν . (109)

This vacuum contribution has the form of the energy–momentum tensor of an
ideal fluid, with energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence
the combination ρΛ + 3pΛ is equal to −2ρΛ, and is thus negative. In what
follows we shall often include in ρ and p the vacuum pieces.

A.3 Redshift

As a result of the expansion of the Universe the light of distant sources appears
redshifted. The amount of redshift can be simply expressed in terms of the
scale factor a(t).

Consider two integral curves of the average velocity field u. We imagine
that one describes the worldline of a distant comoving source and the other
that of an observer at a telescope (see Fig. 9). Since light is propagating along
null geodesics, we conclude from (85) that along the worldline of a light ray
dt = a(t)dσ, where dσ is the line element on the three-dimensional space
(Σ, γ) of constant curvature k = 0,±1. Hence the integral on the left of

∫ to

te

dt

a(t)
=

∫ obs.

source

dσ , (110)

between the time of emission (te) and the arrival time at the observer (to) is
independent of te and to. Therefore, if we consider a second light ray that is
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Source (te)

Observer (to)

Integral curve of uμdt 
= a(

t) 
dσ

Fig. 9. Redshift for Friedmann models

emitted at the time te + Δte and is received at the time to + Δto, we obtain
from the last equation

∫ to+Δto

te+Δte

dt

a(t)
=

∫ to

te

dt

a(t)
. (111)

For a small Δte this gives

Δto
a(to)

=
Δte
a(te)

.

The observed and the emitted frequences νo and νe, respectively, are thus
related according to

νo
νe

=
Δte
Δto

=
a(te)
a(to)

. (112)

The redshift parameter z is defined by

z :=
νe − νo

νo
, (113)

and is given by the key equation

1 + z =
a(to)
a(te)

. (114)

One can also express this by the equation ν · a = const along a null geodesic.
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A.4 Cosmic Distance Measures

We now introduce a further important tool, namely operational definitions of
three different distance measures, and show that they are related by simple
redshift factors.

If D is the physical (proper) extension of a distant object and δ is its angle
subtended, then the angular diameter distance DA is defined by

DA := D/δ . (115)

If the object is moving with the proper transversal velocity V⊥ and with
an apparent angular motion dδ/dt0, then the proper-motion distance is by
definition

DM :=
V⊥

dδ/dt0
. (116)

Finally, if the object has the intrinsic luminosity L and F is the received
energy flux then the luminosity distance is naturally defined as

DL := (L/4πF)1/2 . (117)

Below we show that these three distances are related as follows

DL = (1 + z)DM = (1 + z)2DA. (118)

It will be useful to introduce on (Σ, γ) ‘polar’ coordinates (r, ϑ, ϕ), such
that

γ =
dr2

1− kr2
+ r2dΩ2, dΩ2 = dϑ2 + sin2 ϑdϕ2 . (119)

One easily verifies that the curvature forms of this metric satisfy (89). (This
follows without doing any work by using in [1] the curvature forms (3.9) in
the ansatz (3.3) for the Schwarzschild metric.)

To prove (118) we show that the three distances can be expressed as fol-
lows, if re denotes the comoving radial coordinate (in (119)) of the distant
object and the observer is (without loss of generality) at r = 0.

DA = rea(te), DM = rea(t0), DL = rea(t0)
a(t0)
a(te)

. (120)

Once this is established, (118) follows from (114).
From Fig. 10 and (119) we see that

D = a(te)reδ , (121)

hence the first equation in (120) holds.
To prove the second one we note that the source moves in a time dt0 a

proper transversal distance
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rea(to) to

r 
=

 r
e r 
=

 r
e 

dte D

r 
=

 0
 

Fig. 10. Spacetime diagram for cosmic distance measures. The angular diameter
distance Dang ≡ DA and the luminosity distance Dlum ≡ DL have been introduced
in this Appendix. The other two will be introduced in the Appendix C

dD = V⊥dte = V⊥dt0
a(te)
a(t0)

.

Using again the metric (119) we see that the apparent angular motion is

dδ =
dD

a(te)re
=

V⊥dt0
a(t0)re

.

Inserting this into the definition (116) shows that the second equation in (120)
holds. For the third equation we have to consider the observed energy flux. In
a time dte the source emits an energy Ldte. This energy is redshifted to the
present by a factor a(te)/a(t0), and is now distributed by (119) over a sphere
with proper area 4π(rea(t0))2 (see Fig. 10). Hence the received flux (apparent
luminosity) is

F = Ldte a(te)
a(t0)

1
4π(rea(t0))2

1
dt0

,

thus

F =
La2(te)

4πa4(t0)r2
e

.

Inserting this into the definition (117) establishes the third equation in (120).
For later applications we write the last equation in the more transparent form

F =
L

4π(rea(t0))2
1

(1 + z)2
. (122)

The last factor is due to redshift effects.
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Fig. 11. Cosmological distance measures as a function of source redshift for two
cosmological models

Two of the discussed distances as a function of z are shown in Fig. 11 for
two Friedmann models with different cosmological parameters. The other two
distance measures will be introduced in Appendix C.

B Thermal History below 100 MeV

B.1 Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the con-
finement phase, the Universe was initially dominated by a complicated dense
hadron soup. The abundance of pions, for example, was so high that they
nearly overlapped. The pions, kaons, and other hadrons soon began to decay
and most of the nucleons and antinucleons annihilated, leaving only a tiny
baryon asymmetry. The energy density is then almost completely dominated
by radiation and the stable leptons (e±, the three neutrino flavors, and their
antiparticles). For some time all these particles are in thermodynamic equi-
librium. For this reason, only a few initial conditions have to be imposed. The
Universe was never as simple as in this lepton era. (At this stage it is almost
inconceivable that the complex world around us would eventually emerge.)

The first particles which freeze out of this equilibrium are the weakly
interacting neutrinos. Let us estimate when this happened. The coupling of
the neutrinos in the lepton era is dominated by the reactions:

e− + e+ ↔ ν + ν̄ , e± + ν → e± + ν , e± + ν̄ → e± + ν̄ .
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For dimensional reasons, the cross sections are all of magnitude

σ � G2
FT

2 , (123)

where GF is the Fermi coupling constant (� = c = kB = 1). Numerically,
GFm

2
p � 10−5. On the other hand, the electron and neutrino densities ne, nν

are about T 3. For this reason, the reaction rates Γ for ν-scattering and ν-
production per electron are of magnitude c · v · ne � G2

FT
5. This has to be

compared with the expansion rate of the Universe

H =
ȧ

a
� (Gρ)1/2 .

Since ρ � T 4 we get
H � G1/2T 2 , (124)

and thus
Γ

H
� G−1/2G2

FT
3 � (T/1010 K)3 . (125)

This ration is larger than 1 for T > 1010 K � 1 MeV, and the neutrinos thus
remain in thermodynamic equilibrium until the temperature has decreased to
about 1 MeV. But even below this temperature the neutrinos remain Fermi
distributed,

nν(p)dp =
1

2π2

1
ep/Tν + 1

p2dp , (126)

as long as they can be treated as massless. The reason is that the number den-
sity decreases as a−3 and the momenta with a−1. Because of this we also see
that the neutrino temperature Tν decreases after decoupling as a−1. The same
is, of course, true for photons. The reader will easily find out how the distri-
bution evolves when neutrino masses are taken into account. (Since neutrino
masses are so small this is only relevant at very late times.)

B.2 Chemical Potentials of the Leptons

The equilibrium reactions below 100 MeV, say, conserve several additive quan-
tum numbers,18 namely the electric charge Q, the baryon number B, and the
three lepton numbers Le, Lμ, Lτ . Correspondingly, there are five independent
chemical potentials. Since particles and antiparticles can annihilate to pho-
tons, their chemical potentials are oppositely equal: μe− = −μe+ , etc. From
the following reactions

e− + μ+ → νe + ν̄μ, e− + p→ νe + n, μ− + p→ νμ + n

18 Even if B,Le, Lμ, Lτ should not be strictly conserved, this is not relevant within
a Hubble time H−1

0 .
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we infer the equilibrium conditions

μe− − μνe = μμ− − μνμ = μn − μp . (127)

As independent chemical potentials we can thus choose

μp, μe− , μνe , μνμ , μντ . (128)

Because of local electric charge neutrality, the charge number density nQ
vanishes. From observations (see subsection E) we also know that the baryon
number density nb is much smaller than the photon number density (∼ en-
tropy density sγ). The ratio nB/sγ remains constant for adiabatic expansion
(both decrease with a−3; see the next section). Moreover, the lepton number
densities are

nLe = ne− + nνe − ne+ − nν̄e , nLμ = nμ− + nνμ − nμ+ − nν̄μ , etc . (129)

Since in the present Universe the number density of electrons is equal to
that of the protons (bound or free), we know that after the disappearance
of the muons ne− � ne+ (recall nB � nγ), thus μe− (= −μe+) � 0. It
is conceivable that the chemical potentials of the neutrinos and antineutrinos
cannot be neglected, i.e., that nLe is not much smaller than the photon number
density. In analogy to what we know about the baryon density we make the
reasonable asumption that the lepton number densities are also much smaller
than sγ . Then we can take the chemical potentials of the neutrinos equal
to zero (|μν |/kT � 1). With what we said before, we can then put the five
chemical potentials (128) equal to zero, because the charge number densities
are all odd in them. Of course, nB does not really vanish (otherwise we would
not be here), but for the thermal history in the era we are considering they
can be ignored.

B.3 Constancy of Entropy

Let ρeq, peq denote (in this subsection only) the total energy density and pres-
sure of all particles in thermodynamic equilibrium. Since the chemical poten-
tials of the leptons vanish, these quantities are only functions of the temper-
ature T . According to the second law, the differential of the entropy S(V, T )
is given by

dS(V, T ) =
1
T

[d(ρeq(T )V ) + peq(T )dV ] . (130)

This implies

d(dS) = 0 = d

(
1
T

)

∧ d(ρeq(T )V ) + d

(
peq(I)

T

)

∧ dV

= −ρeq
T 2

dT ∧ dV +
d

dT

(
peq(T )

T

)

dT ∧ dV ,
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i.e., the Maxwell relation

dpeq(T )
dT

=
1
T

[ρeq(T ) + peq(T )] . (131)

If we use this in (130), we get

dS = d

[
V

T
(ρeq + peq)

]

,

so the entropy density of the particles in equilibrium is

s =
1
T

[ρeq(T ) + peq(T )] . (132)

For an adiabatic expansion the entropy in a comoving volume remains
constant:

S = a3s = const . (133)

This constancy is equivalent to the energy equation (105) for the equilibrium
part. Indeed, the latter can be written as

a3 dpeq
dt

=
d

dt
[a3(ρeq + peq)] ,

and by (132) this is equivalent to dS/dt = 0.
In particular, we obtain for massless particles (p = ρ/3) from (131) again

ρ ∝ T 4 and from (132) that S = constant implies T ∝ a−1.
Once the electrons and positrons have annihilated below T ∼ me, the equi-

librium components consist of photons, electrons, protons, and – after the big
bang nucleosynthesis – of some light nuclei (mostly He4). Since the charged
particle number densities are much smaller than the photon number density,
the photon temperature Tγ still decreases as a−1. Let us show this formally.
For this we consider beside the photons an ideal gas in thermodynamic equi-
librium with the black body radiation. The total pressure and energy density
are then (we use units with � = c = kB = 1; n is the number density of the
non-relativistic gas particles with mass m):

p = nT +
π2

45
T 4, ρ = nm +

nT

γ − 1
+

π2

15
T 4 (134)

(γ = 5/3 for a monoatomic gas). The conservation of the gas particles, na3 =
const., together with the energy equation (106) implies, if σ := sγ/n,

d lnT

d ln a
= −

[
σ + 1

σ + 1/3(γ − 1)

]

.

For σ � 1 this gives the well-known relation T ∝ a3(γ−1) for an adiabatic
expansion of an ideal gas.
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We are, however, dealing with the opposite situation σ � 1, and then we
obtain, as expected, a · T = const.

Let us look more closely at the famous ratio nB/sγ . We need

sγ =
4

3T
ργ =

4π2

45
T 3 = 3.60nγ, nB = ρB/mp = ΩBρcrit/mp . (135)

From the present value of Tγ � 2.7 K and (30), ρcrit = 1.12 ×
10−5 h2

0(mp/cm3), we obtain as a measure for the baryon asymmetry of the
Universe

nB
sγ

= 0.75× 10−8(ΩBh2
0) . (136)

It is one of the great challenges to explain this tiny number. So far, this has
been achieved at best qualitatively in the framework of grand unified theories
(GUTs).

B.4 Neutrino Temperature

During the electron–positron annihilation below T = me the a-dependence
is complicated, since the electrons can no more be treated as massless. We
want to know at this point what the ratio Tγ/Tν is after the annihilation.
This can easily be obtained by using the constancy of comoving entropy for
the photon–electron–positron system, which is sufficiently strongly coupled to
maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at T � me, long
before annihilation begins. To compute this note the identity

∫ ∞

0

xn

ex − 1
dx−

∫ ∞

0

xn

ex + 1
dx = 2

∫ ∞

0

xn

e2x − 1
dx =

1
2n

∫ ∞

0

xn

ex − 1
dx ,

whence ∫ ∞

0

xn

ex + 1
dx = (1− 2−n)

∫ ∞

0

xn

ex − 1
dx . (137)

In particular, we obtain for the entropies se, sγ the following relation

se =
7
8
sγ (T � me) . (138)

Equating the entropies for Tγ � me and Tγ � me gives

(Tγa)3
∣
∣
before

[

1 + 2× 7
8

]

= (Tγa)3
∣
∣
after

× 1 ,

because the neutrino entropy is conserved. Therefore, we obtain

(aTγ)|after =
(

11
4

)1/3

(aTγ)|before . (139)
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But (aTν)|after = (aTν)|before = (aTγ)|before, hence we obtain the important
relation

(
Tγ
Tν

)∣
∣
∣
∣
after

=
(

11
4

)1/3

= 1.401 . (140)

B.5 Epoch of Matter–Radiation Equality

In the main parts of these lectures the epoch when radiation (photons and
neutrinos) have about the same energy density as non-relativistic matter (dark
matter and baryons) plays a very important role. Let us determine the red-
shift, zeq, when there is equality.

For the three neutrino and antineutrino flavors the energy density is ac-
cording to (137)

ρν = 3× 7
8
×

(
4
11

)4/3

ργ . (141)

Using
ργ
ρcrit

= 2.47× 10−5h−2
0 (1 + z)4 , (142)

we obtain for the total radiation energy density, ρr,
ρr

ρcrit
= 4.15× 10−5h−2

0 (1 + z)4 . (143)

Equating this to
ρM
ρcrit

= ΩM (1 + z)3 (144)

we obtain
1 + zeq = 2.4× 104ΩMh2

0 . (145)

Only a small fraction of ΩM is baryonic. There are several methods to
determine the fraction ΩB in baryons. A traditional one comes from the
abundances of the light elements. This is treated in most texts on cosmol-
ogy. (German-speaking readers find a detailed discussion in my lecture notes
[112], which are available in the Internet.) The comparison of the straightfor-
ward theory with observation gives a value in the range ΩBh

2
0 = 0.021±0.002.

Other determinations are all compatible with this value. In Sect. 8 we shall
obtain ΩB from the CMB anisotropies. The striking agreement of different
methods, sensitive to different physics, strongly supports our standard big
bang picture of the Universe.

C Inflation and Primordial Power Spectra

C.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so
serious that the proposal of a very early accelerated expansion, preceding
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the hot era dominated by relativistic fluids, appears quite plausible. This
general qualitative aspect of ‘inflation’ is now widely accepted. However, when
it comes to concrete model building the situation is not satisfactory. Since we
do not know the fundamental physics at superhigh energies not too far from
the Planck scale, models of inflation are usually of a phenomenological nature.
Most models consist of a number of scalar fields, including a suitable form for
their potential. Usually there is no direct link to fundamental theories, like
supergravity; however, there have been many attempts in this direction. For
the time being, inflationary cosmology should be regarded as an attractive
scenario, and not yet as a theory.

The most important aspect of inflationary cosmology is that the generation
of perturbations on large scales from initial quantum fluctuations is unavoid-
able and predictable. For a given model these fluctuations can be calculated
accurately, because they are tiny and cosmological perturbation theory can be
applied. And, most importantly, these predictions can be confronted with the
cosmic microwave anisotropy measurements. We are in the fortunate position
to witness rapid progress in this field. The results from various experiments,
most recently from WMAP, give already strong support of the basic predic-
tions of inflation. Further experimental progress can be expected in the coming
years.

C.2 The Horizon Problem and the General Idea of Inflation

I begin by describing the famous horizon puzzle, which is a very serious causal-
ity problem of standard big bang cosmology.

Past and Future Light Cone Distances

Consider our past light cone for a Friedmann spacetime model (Fig. 12). For a
radial light ray the differential relation dt = a(t)dr/(1− kr2)1/2 holds for the
coordinates (t, r) of the metric (19). The proper radius of the past light sphere
at time t (cross section of the light cone with the hypersurface {t = const}) is

lp(t) = a(t)
∫ r(t)

0

dr√
1− kr2

, (146)

where the coordinate radius is determined by

∫ r(t)

0

dr√
1− kr2

=
∫ t0

t

dt′

a(t′)
. (147)

Hence,

lp(t) = a(t)
∫ t0

t

dt′

a(t′)
. (148)
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lf (t')

t

lp(t)

trec

t'

t    0~

phys.distance

Fig. 12. Spacetime diagram illustrating the horizon problem

We rewrite this in terms of the redhift variable. From 1 + z = a0/a we get
dz = −(1 + z)Hdt, so

dt

dz
= − 1

H0(1 + z)E(z)
, H(z) = H0E(z) .

Therefore,

lp(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (149)

Similarly, the extension lf (t) of the forward light cone at time t of a very
early event (t � 0, z � ∞) is

lf (t) = a(t)
∫ t

0

dt′

a(t′)
=

1
H0(1 + z)

∫ ∞

z

dz′

E(z′)
. (150)

For the present Universe (t0) this becomes what is called the particle horizon
distance

Dhor = H−1
0

∫ ∞

0

dz′

E(z′)
, (151)

and gives the size of the observable Universe.
Analytical expressions for these distances are only available in special

cases. For orientation we consider first the Einstein–de Sitter model (K =
0, ΩΛ = 0, ΩM = 1), for which a(t) = a0(t/t0)2/3 and thus

Dhor = 3t0 = 2H−1
0 , lf(t) = 3t ,

lp
lf

=
(
t0
t

)1/3

− 1 =
√

1 + z − 1 . (152)



382 N. Straumann

For a flat Universe a good fitting formula for cases of interest is (Hu and
White)

Dhor � 2H−1
0

1 + 0.084 lnΩM√
ΩM

. (153)

It is often convenient to work with ‘comoving distances’, by rescaling dis-
tances referring to time t (like lp(t), lf (t)) with the factor a(t0)/a(t) = 1 + z
to the present. We indicate this by the superscript c. For instance,

lcp(z) =
1
H0

∫ z

0

dz′

E(z′)
. (154)

This distance is plotted in Fig. 11 of Appendix A as Dcom(z). Note that for
a0 = 1 : lcf (η) = η, lcp(η) = η0 − η. Hence (150) gives the following relation
between η and z:

η =
1
H0

∫ ∞

z

dz′

E(z′)
.

The Number of Causality Distances on the Cosmic Photosphere

The number of causality distances at redshift z between two antipodal emis-
sion points is equal to lp(z)/lf(z), and thus the ratio of the two integrals on
the right of (149) and (150). We are particularly interested in this ratio at the
time of last scattering with zrec � 1100. Then we can use for the numerator a
flat Universe with non-relativistic matter, while for the denominator we can
neglect in the standard hot big bang model ΩK and ΩΛ. A reasonable estimate
is already obtained by using the simple expression in (152), i.e., z1/2

rec ≈ 30. A
more accurate evaluation would increase this number to about 40. The length
lf (zrec) subtends an angle of about 1 degree (exercise). How can it be that
there is such a large number of causally disconnected regions we see on the
microwave sky all having the same temperature? This is what is meant by
the horizon problem and was a troublesome mystery before the invention of
inflation.

Vacuum-Like Energy and Exponential Expansion

This causality problem is potentially avoided, if lf (t) would be increased in
the very early Universe as a result of different physics. If a vacuum-like energy
density would dominate, the Universe would undergo an exponential expan-
sion. Indeed, in this case the Friedmann equation is

(
ȧ

a

)2

+
k

a2
=

8πG
3

ρvac, ρvac � const , (155)
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and has the solutions

a(t) ∝
⎧
⎨

⎩

cosh Hvact : k = 1
eHvact : k = 0

sinh Hvact : k = 1 ,
(156)

with

Hvac =

√
8πG

3
ρvac . (157)

Assume that such an exponential expansion starts for some reason at time
ti and ends at the reheating time te, after which standard expansion takes
over. From

a(t) = a(ti)eHvac(t−ti) (ti < t < te) , (158)

for k = 0 we get

lcf (te) � a0

∫ te

ti

dt

a(t)
=

a0

Hvaca(ti)
(
1− e−HvacΔt

) � a0

Hvaca(ti)
,

where Δt := te − ti. We want to satisfy the condition lcf (te) � lcp(te) � H−1
0

(see (153)), i.e.,

aiHvac � a0H0 ⇔ ai
ae
� a0H0

aeHvac
(159)

or
eHvacΔt � aeHvac

a0H0
=

Heqaeq
H0a0

Hvacae
Heqaeq

.

Here, eq indicates the values at the time teq when the energy densities of non-
relativistic and relativistic matter were equal. We now use the Friedmann
equation for k = 0 and w := p/ρ = const. From (25) it follows that in this
case

Ha ∝ a−(1+3w)/2 ,

and hence we arrive at

eHvacΔt �
(

a0

aeq

)1/2 (
aeq
ae

)

= (1 + zeq)1/2
(

Te
Teq

)

= (1 + zeq)−1/2TPl
T0

Te
TPl

,

(160)
where we used aT = const. So the number of e-folding periods during the
inflationary period, N = HvacΔt, should satisfy

N � ln
(
TPl
T0

)

− 1
2

ln zeq + ln
(

Te
TPl

)

� 70 + ln
(

Te
TPl

)

. (161)

For a typical GUT scale, Te ∼ 1014 GeV , we arrive at the condition N � 60.
Such an exponential expansion would also solve the flatness problem, an-

other worry of standard big bang cosmology. Let me recall how this problem
arises.
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The Friedmann equation (101) can be written as

(Ω−1 − 1)ρa2 = − 3k
8πG

= const. ,

where

Ω(t) :=
ρ(t)

3H2/8πG
(162)

(ρ includes vacuum energy contributions). Thus

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρa2
. (163)

Without inflation we have

ρ = ρeq

(aeq
a

)4

(z > zeq) , (164)

ρ = ρ0

(a0

a

)3

(z < zeq) . (165)

According to (26) zeq is given by

1 + zeq =
ΩM
ΩR

� 104 Ω0h
2
0 . (166)

For z > zeq we obtain from (163) and (164)

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρeqa2
eq

ρeqa
2
eq

ρa2
= (Ω−1

0 − 1)(1 + zeq)−1

(
a

aeq

)2

(167)

or

Ω−1− 1 = (Ω−1
0 − 1)(1 + zeq)−1

(
Teq
T

)2

� 10−60(Ω−1
0 − 1)

(
TPl
T

)2

. (168)

Let us apply this equation for T = 1 MeV, Ω0 � 0.2−0.3. Then | Ω−1 |≤
10−15, thus the Universe was already incredibly flat at modest temperatures,
not much higher than at the time of nucleosynthesis.

Such a fine tuning must have a physical reason. This is naturally provided
by inflation, because our observable Universe could originate from a small
patch at te. (A tiny part of the Earth surface is also practically flat.)

Beside the horizon scale lf (t), the Hubble length H−1(t) = a(t)/ȧ(t) plays
also an important role. One might call this the “microphysics horizon”, be-
cause this is the maximal distance microphysics can operate coherently in
one expansion time. It is this length scale which enters in basic evolution
equations, such as the equation of motion for a scalar field (see (175) below).

We sketch in Figs. 13–15 the various length scales in inflationary models,
that is for models with a period of accelerated (e.g., exponential) expansion.
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lp(t)

phys.distance

lf (t)

trec

ti

t

tR

lf (t)>>lp(t)

0

infl.
period

Fig. 13. Past and future light cones in models with an inflationary period

From these it is obvious that there can be – at least in principle – a causal
generation mechanism for perturbations. This topic will be discussed in great
detail in later parts of these lectures.

Exponential inflation is just an example. What we really need is an early
phase during which the comoving Hubble length decreases (Fig. 15). This
means that (for Friedmann spacetimes)

(
H−1(t)/a

)·
< 0 . (169)

t

trec

tR

ti

H-1(t)

H-1(t)

d: phys. distance
    (wavelength)

lf (t)  (causality horizon)

phys.distance

Fig. 14. Physical distance (e.g., between clusters of galaxies) and Hubble distance,
and causality horizon in inflationary models
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tR

t

dc

H-1(t)

H-1(t)

comoving distance

Fig. 15. Part of Fig. 14 expressed in terms of comoving distances

This is the general definition of inflation; equivalently, ä > 0 (accelerated
expansion). For a Friedmann model (107) tells us that

ä > 0 ⇔ p < −ρ/3 . (170)

This is, of course, not satisfied for ‘ordinary’ fluids.
Assume, as another example, power-law inflation: a ∝ tp. Then ä > 0 ⇔

p > 1.

C.3 Scalar Field Models

Models with p < −ρ/3 are naturally obtained in scalar field theories. Most
of the time we shall consider the simplest case of one neutral scalar field ϕ
minimally coupled to gravity. Thus the Lagrangian density is assumed to be

L =
M2
pl

16π
R[g]− 1

2
∇μϕ∇μϕ− V (ϕ , (171)

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

�ϕ = V,ϕ , (172)

and the energy–momentum tensor in the Einstein equation

Gμν =
8π
M2
Pl

Tμν (173)

is
Tμν = ∇μϕ∇νϕ + gμνLϕ (174)

(Lϕ is the scalar field part of (171)).
We consider first Friedmann spacetimes. Using previous notation, we ob-

tain from (85)
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√−g = a3√γ, �ϕ =
1√−g

∂μ(
√−ggμν∂νϕ) = − 1

a3
(a3ϕ̇)· +

1
a2
"γϕ .

The field equation (172) becomes

ϕ̈ + 3Hϕ̇− 1
a2
"γϕ = −V,ϕ(ϕ) . (175)

Note that the expansion of the Universe induces a ‘friction’ term. In this basic
equation one also sees the appearance of the Hubble length. From (174) we
obtain for the energy density and the pressure of the scalar field

ρϕ = T00 =
1
2
ϕ̇2 + V +

1
2a2

(∇ϕ)2 , (176)

pϕ =
1
3
T ii =

1
2
ϕ̇2 − V − 1

6a2
(∇ϕ)2 . (177)

(Here, (∇ϕ)2 denotes the squared gradient on the 3-space (Σ, γ).)
Suppose the gradient terms can be neglected, and that ϕ is during a certain

phase slowly varying in time, then we get

ρϕ ≈ V, pϕ ≈ −V . (178)

Thus pϕ ≈ −ρϕ, as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous

equations. Then these reduce to

ϕ̈ + 3Hϕ̇ + V,ϕ(ϕ) = 0 ; (179)

ρϕ =
1
2
ϕ̇2 + V, pϕ =

1
2
ϕ̇2 − V . (180)

Beside (179) the other dynamical equation is the Friedmann equation

H2 +
K

a2
=

8π
3M2

Pl

[
1
2
ϕ̇2 + V (ϕ)

]

. (181)

Equations (179) and (181) define a non-linear dynamical system for the dy-
namical variables a(t), ϕ(t), which can be studied in detail (see, e.g., [113]).

Let us ignore the curvature term K/a2 in (181). Differentiating this equa-
tion and using (179) shows that

Ḣ = − 4π
M2
Pl

ϕ̇2 . (182)

Regard H as a function of ϕ, then

dH

dϕ
= − 4π

M2
Pl

ϕ̇ . (183)
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This allows us to write the Friedmann equation as

(
dH

dϕ

)2

− 12π
M2
Pl

H2(ϕ) = −32π2

M4
Pl

V (ϕ) . (184)

For a given potential V (ϕ) this is a differential equation for H(ϕ). Once this
function is known, we obtain ϕ(t) from (183) and a(t) from (182).

C.4 Power-Law Inflation

We now proceed in the reverse order, assuming that a(t) follows a power law

a(t) = const. tp . (185)

Then H = p/t, so by (182)

ϕ̇ =
√

p

4π
MPl

1
t
, ϕ(t) =

√
p

4π
MPl ln(t) + const. ,

hence

H ∝ exp
(

−
√

4π
p

ϕ

MPl

)

. (186)

Using this in (184) leads to an exponential potential

V (ϕ) = V0 exp
(

−4
√

π

p

ϕ

MPl

)

. (187)

C.5 Slow-Roll Approximation

An important class of solutions is obtained in the slow-roll approximation
(SLA), in which the basic (179) and (181) can be replaced by

H2 =
8π

3M2
Pl

V (ϕ) , (188)

3Hϕ̇ = −V,ϕ . (189)

A necessary condition for their validity is that the slow-roll parameters

εV (ϕ) : =
M2
Pl

16π

(
V,ϕ
V

)2

, (190)

ηV (ϕ) : =
M2
Pl

8π
V,ϕϕ
V

(191)

are small:
εV � 1, | ηV |� 1 . (192)
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These conditions, which guarantee that the potential is flat, are, however, not
sufficient.

The simplified system (188) and (189) implies

ϕ̇2 =
M2
Pl

24π
1
V

(V,ϕ)2 . (193)

This is a differential equation for ϕ(t).
Let us consider potentials of the form

V (ϕ) =
λ

n
ϕn . (194)

Then (193) becomes

ϕ̇2 =
n2M2

Pl

24π
1
ϕ2

V . (195)

Hence, (188) implies
ȧ

a
= − 4π

nM2
Pl

(ϕ2)· ,

and so

a(t) = a0 exp
[

4π
nM2

Pl

(ϕ2
0 − ϕ2(t))

]

. (196)

We see from (195) that 1
2 ϕ̇

2 � V (ϕ) for

ϕ� n

4
√

3π
MPl . (197)

Consider first the example n = 4. Then (195) implies

ϕ̇

ϕ
=

√
λ

6π
MPl ⇒ ϕ(t) = ϕ0 exp

(

−
√

λ

6π
MPl t

)

. (198)

For n �= 4:

ϕ(t)2−n/2 = ϕ
2−n/2
0 + t

(
2− n

2

)√
nλ

24π
M

3−n/2
Pl . (199)

For the special case n = 2 this gives, using the notation V = 1
2m

2ϕ2, the
simple result

ϕ(t) = ϕ0 − mMPl

2
√

3π
t . (200)

Inserting this into (196) provides the time dependence of a(t).
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C.6 Why Did Inflation Start?

Attempts to answer this and related questions are very speculative indeed. A
reasonable direction is to imagine random initial conditions and try to un-
derstand how inflation can emerge, perhaps generically, from such a state of
matter. A. Linde first discussed a scenario along these lines which he called
chaotic inflation. In the context of a single scalar field model he argued that
typical initial conditions correspond to 1

2 ϕ̇
2 ∼ 1

2 (∂iϕ)2 ∼ V (ϕ) ∼ 1 (in Planck-
ian units). The chance that the potential energy dominates in some domain of
size > O(1) is presumably not very small. In this situation inflation could be-
gin and V (ϕ) would rapidly become even more dominant, which ensures con-
tinuation of inflation. Linde concluded from such considerations that chaotic
inflation occurs under rather natural initial conditions. For this to happen,
the form of the potential V (ϕ) can even be a simple power law of the form
(194). Many questions remain, however, open.

The chaotic inflationary Universe will look on very large scales – much
larger than the present Hubble radius – extremely inhomogeneous. For a re-
view of this scenario I refer to [114]. A much more extended discussion of
inflationary models, including references, can be found in [107].

C.7 Inflation and Primordial Power Spectra

For a detailed derivation of the primordial power spectra that are generated
as a result of quantum fluctuations during an inflationary period, I refer to
my Combo-lectures [63].

The main steps are quite straightforward. First, one studies classical per-
turbations of the scalar field and the metric. For the scalar field one can
reduce the problem to a Klein–Gordon equation with a time-dependent mass
for a suitable gauge invariant perturbation amplitude. The quantization of
this field follows standard rules. The quantization of the scalar part of the
metric (Bardeen potentials) is then also fixed. Of particular interest is the
power spectrum, PR(k), of the so-called “curvature perturbation amplitude”
R. This is proportional to the Fourier transform of the two-point correlation
function. More precisely, if

R(η,x) = (2π)−3/2

∫

Rk(η)eik·xd3k ,

then

〈0|RkR†
k′ |0〉 =:

2π2

k3
PR(k)δ(3)(k − k′) .

In the slow-roll approximation, this can be worked out explicitly, with the
result

PR(k) =
4

M4
Pl

H4

(dH/dϕ)2

∣
∣
∣
∣
k=aH

(201)

� 128π
3

1
M6
Pl

U3

(U,ϕ)2

∣
∣
∣
∣
k=aH

. (202)
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The expression on the right is evaluated at horizon crossing k = aH .
It is even simpler to determine the power spectrum of gravitational waves

(tensor modes). In the same approximation one finds

Pg(k) =
16
π

H2

M2
Pl

∣
∣
∣
∣
k=aH

, H2 � 8π
3M2

Pl

U . (203)

For a given inflationary model, the power spectra are uniquely determined.
There is one delicate question, namely why we have chosen in the definition

of the power spectrum the Fock state, relative to modes that at very short
distances (k/aH → ∞) approach the plane waves of the gravity free case
with positive frequences. A priori, the initial state could contain all kinds
of excitations. These would, however, be redshifted away by the enormous
inflationary expansion, and the final power spectrum on interesting scales,
much larger than the Hubble length, should be largely independent of possible
initial excitations.

For a comparison with observations the power index, ns, for scalar pertur-
bations, defined by

ns − 1 :=
d lnPR(k)

d ln k
(204)

is of particular interest. In terms of the slow-roll parameters (190) and (191)
it is given by

ns − 1 = −6εU + 2ηU , (205)

whence the spectrum is nearly scale-free. For the ratio r of the amplitudes of
Pg and PR one finds r = 16εU . The WMAP data match the basic inflationary
predictions, and are even well fit by the simplest model U ∝ ϕ2.

D Quintessence Models

In quintessence models the exotic missing energy with negative pressure is
again described by a scalar field, whose potential is chosen such that the
energy density of the homogeneous scalar field adjusts itself to be compa-
rable to the matter density today for quite generic initial conditions, and
is dominated by the potential energy. This ensures that the pressure be-
comes sufficiently negative. It is not simple to implement this general idea
such that the model is phenomenologically viable. For instance, the success
of BBN should not be spoiled. CMB and large-scale structure impose other
constraints. One also would like to understand why cosmological acceleration
started at about z ∼ 1, and not much earlier or in the far future. There have
been attempts to connect this with some characteristic events in the post-
recombination Universe. On a fundamental level, the origin of a quintessence
field that must be extremely weakly coupled to ordinary matter remains in
the dark.
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Let me briefly describe a simple model of this kind [115]. For the dynamics
of the scalar field φ we adopt an exponential potential

V = V0 e−λφ/MP .

Such potentials often arise in Kaluza–Klein and string theories. Matter is
described by a fluid with a baryotropic equation of state: pf = (γ − 1)ρf .

For a Friedmann model with zero space-curvature, one can cast the ba-
sic equations into an autonomous two-dimensional dynamical system for the
quantities

x(τ) =
κφ̇√
6H

, y(τ) =
κ
√
V√

3H
,

where
H = ȧ/a, τ = log a, κ2 = 8πG

(a(t) is the scalar factor). This system of autonomous differential equations
has the form

dx

dτ
= f(x, y;λ, γ),

dy

dτ
= g(x, y;λ, γ) ,

where f and g are polynomials in x and y of third degree, which depend
parametrically on λ and γ. The density parameters Ωφ and Ωf for the field φ
and the fluid are given by

Ωφ = x2 + y2, Ωφ + Ωf = 1 .

The interesting fact is that, for a large domain of the parameters λ, γ, the
phase portrait has qualitatively the shape of Fig. 16. Therefore, under generic

Fig. 16. Phase plane for γ = 1, λ = 3. The late-time attractor is the scaling solution
with x = y = 1/

√
6 (from [115])
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initial conditions, there is a global attractor (a node or a spiral) for which
Ωφ = 3γ/λ2. For this “scaling solution” Ωφ/Ωf remains fixed, and for any
other solution this ration is finally approached.

Unfortunately, if we set pφ = (γφ−1) we find that γφ = 2x2/(x2 +y2), and
this is equal to γ for the scaling solution. Thus this does not correspond to a
quintessence solution. Moreover, the condition that ρφ should be subdominant
during nucleosynthesis implies a small value for Ωφ.

A more successful example of a so-called “tracker potential”, with the prop-
erty that the scalar field approaches a common evolutionary path from a wide
range of initial conditions, has the form of an inverse power law, V (φ) = V0/φ

α

[117]. There is an extended literature on the subject. References [116]–[121]
give a small selection of important early papers. For a recent review that de-
scribes also other scalar field models, see [122]. I emphasize once more that
on the basis of the vacuum energy problem we would expect a huge additive
constant for the quintessence potential that would destroy the whole picture.
Thus, assuming for instance that the potential approaches zero as the scalar
field goes to infinity has (so far) no basis. Apart of this and other fine tun-
ing problems, I doubt that this kind of phenomenological models – with no
natural field theoretical justification – will lead to an understanding of dark
energy at a deeper level.

Fortunately, future more precise observations will allow us to decide
whether the presently dominating exotic energy density satisfies p/ρ = −1
or whether this ratio is somewhere between −1 and −1/3. Recent studies
(see [71, 72], and references therein), which make use of existing cosmological
data, do not yet support quintessence. The restrictions for a possible redshift
dependence are, so far, rather weak.

If convincing evidence for such a dependence should be established, we
will not be able to predict the distant future of the Universe. Eventually, the
dark energy density may perhaps become negative. This illustrates that we
may never be able to predict the asymptotic behavior of the most grandiose
of all dynamical systems. Other conclusions are left to the reader.
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